References:
1.Colling, D.A., Industrial Safety: Management andTechnology, Prentice Hall (1990).
2.International Traffic Safety Data and Analysis Group (Irtad)Road Safety Annual Report 2020, International TransportForum (2020).
3.Kashani, A.T. and Mohaymany, A.S. “Analysis of the trafficinjury severity on two-lane, two-way rural roads based onclassification tree models”, Safety Sci. 49(10), pp. 1314–1320(2011). https://doi.org/10.1016/j.ssci.2011.04.019.
4.AlMamlook, R.E., Kwayu, K.M., Alkasisbeh, M.R., et al.“Comparison of machine learning algorithms for predictingtraffic accident severity”, In 2019 IEEE Jordan InternationalJoint Conference on Electrical Engineering and InformationTechnology (JEEIT), pp. 272-276 (2019). https://doi.org/10.1109/JEEIT.2019.8717393.
5.Hasheminejad, S.H.A. and Hasheminejad, S.M.H. “Trafficaccident severity prediction using a novel multi-objectivegenetic algorithm”, International Journal of Crashworthiness,22(4), pp. 425-440 (2017). https://doi.org/10.1080/13588265.2016.1275431.
6.Alkheder, S., Taamneh, M., and Taamneh, S. “Severityprediction of traffic accident using an artificial neuralnetwork”, Journal of Forecasting, 36(1), pp. 100-108 (2017).https://doi.org/10.1002/for.2425.
7.Rezaie Moghaddam, F., Afandizadeh, S. and Ziyadi, M.“Prediction of accident severity using artificial neural networks” International Journal of Civil Engineering, 9(1), pp. 41-48 (2011).
8.Sameen, M.I. and Pradhan, B. “Severity prediction of trafficaccidents with recurrent neural networks”, Applied Sciences,7(6), p. 476 (2017). https://doi.org/10.3390/app7060476.
9.Zong, F., Xu, H. and Zhang, H. “Prediction for traffic accident severity: comparing the Bayesian network and regressionmodels”, Mathematical Problems in Engineering, 1, 475194(2013). https://doi.org/10.1155/2013/475194.
10.Rasaizadi, A., Sherafat, E. and Seyedabrishami, S.E. “Short-term prediction of traffic state: Statistical approach versusmachine learning approach”, Scientia Iranica, 29(3), pp.1095-1106 (2022).https://doi.org/10.24200/sci.2021.57906.5469.
11.Wen, X., Xie, Y., Jiang, L., et al. “Applications of machinelearning methods in traffic crash severity modelling: currentstatus and future directions”, Transport Reviews, 41(6), pp.855-879 (2021).https://doi.org/10.1080/01441647.2021.1954108.
12.Labib, M.F., Rifat, A.S., Hossain, M.M., et al. “Road accidentanalysis and prediction of accident severity by using machinelearning in Bangladesh”, In 2019 7th International Conference on Smart Computing and Communications (ICSCC), pp. 1-5(2019). https://doi.org/10.1109/ICSCC.2019.8843640.
13.Iranitalab, A. and Khattak, A. “Comparison of four statisticaland machine learning methods for crash severity prediction”,Accident Analysis and Prevention, 108, pp. 27-36(2017).https://doi.org/10.1016/j.aap.2017.08.008.
14.Nassiri, H. and Mohamadian Amiri, A. “Prediction of roadway accident frequencies: Count regressions versus machinelearning models”, Scientia Iranica, 21(2), pp. 263-275 (2014).
15.Nassiri, H. and Edrissi, A. “Modeling truck accident severityon two-lane rural highways”, Scientia Iranica, 13(2), pp. 193-200 (2006).
16.Pei, Y., Wen, Y., and Pan, S. “Traffic accident severityprediction based on interpretable deep learning model”,Transportation Letters, 17(5), pp. 895-909 (2025).https://doi.org/10.1080/19427867.2024.2398336.
17.Yang, Z., Zhang, W., and Feng, J. “Predicting multiple typesof traffic accident severity with explanations: A multi-taskdeep learning framework” Safety Science, 146, 105522 (2022).https://doi.org/10.1016/j.ssci.2021.105522.
18.Angarita-Zapataa, J.S., Maestre-Gongorab, G., and Calderínc,J.F. “A case study of Auto-ML for supervised crash severityprediction” In 19th World Congress of the International FuzzySystems Association (IFSA), 12th Conference of the EuropeanSociety for Fuzzy Logic and Technology (EUSFLAT), and 11th International Summer School on Aggregation Operators(AGOP), pp. 187-194, Atlantis Press (2021).https://doi.org/10.2991/asum.k.210827.026.
19.Alnami, H.M., Mahgoub, I., and Al–Najada, H. “Highwayaccident severity prediction for optimal resource allocation ofemergency vehicles and personnel”, In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference(CCWC), pp. 1231-1238 (2021).https://doi.org/10.1109/CCWC51732.2021.9376155.
20.Theofilatos, A., Chen, C., and Antoniou, C. “Comparingmachine learning and deep learning methods for real-timecrash prediction”, Transportation Research Record, 2673(8),pp. 169-178 (2019). https://doi.org/10.1177/0361198119841571.
21.Zhang, M., Kujala, P., and Hirdaris, S. “A machine learningmethod for the evaluation of ship grounding risk in realoperational conditions”, Reliability Engineering and SystemSafety, 226, 108697 (2022). https://doi.org/10.1016/j.ress.2022.108697.
22.Zhang, M., Montewka, J., Manderbacka, T., et al. “A big dataanalytics method for the evaluation of ship-ship collision riskreflecting hydrometeorological conditions”, ReliabilityEngineering and System Safety, 213, 107674 (2021).https://doi.org/10.1016/j.ress.2021.107674.
23.Kaffash, S., Nguyen, A.T., and Zhu, J. “Big data algorithmsand applications in intelligent transportation system: A reviewand bibliometric analysis”, International Journal ofProduction Economics, 231, 107868 (2021).https://doi.org/10.1016/j.ijpe.2020.107868.
24.Terzi, S. and Erten, K.M. “The effect of big data analysis forsustainable transportation”, Journal of InnovativeTransportation, 1(1), 1102 (2020).
25.Mitchell, T.M., Machine Learning WCB, McGraw-HillBoston, MA (1997).
26.Zhang, X.D. “Machine learning”, In A Matrix AlgebraApproach to Artificial Intelligence, pp. 223-440, Springer,Singapore (2020).
27.Feurer, M., Eggensperger, K., Falkner, S., et al. “Auto-sklearn2.0: The next generation”, arXiv Preprint arXiv:2007, 04074(2020).
28.Mahat, M.S.S. “Number System Conversion for Beginners(Decimal to Binary, Octal and Hexadecimal Conversion)”,Turkish Journal of Computer and Mathematics Education(TURCOMAT), 12(14), pp. 1445-1458 (2021).
29.Moosavi, S., Samavatian, M.H., Parthasarathy, S., et al.“Accident risk prediction based on heterogeneous sparse data:New dataset and insights”, In Proceedings of the 27th ACMSIGSPATIAL International Conference on Advances inGeographic Information Systems, pp. 33-42 (2019).https://doi.org/10.48550/arXiv.1909.09638.