Comparative study of the X-ray crystallography temperature, synthesis method, optical properties, NCI-RDG, and Hirshfeld surface analyses of coordination polymer of [CuI(DAFO)(SCN)]n: An amenable precursor for CuO nanoparticles

Document Type : Article

Authors

1 Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Postcode: 5157944533, Iran

2 Department of Molecular Medicine, School of Advanced Medical Sciences, Tabriz, Postcode: 5166653431, Iran

Abstract

1D coordination polymer (CP) of [CuI(μ1,3-NCS)(DAFO)]n (CP1) (DAFO =  4,5-Diazafluoren-9-one) has been synthesized through branched tube method in ethanol and compared with previously synthesized CP2. Although both CPs synthesis methods and parameters were different, both of them formed in a similar crystal system (orthorhombic) and space group (Pmn21). The optical properties and structure of CP1 were further investigated in detail by bandgap energy (Eg = 5.63 eV), UV-Vis and FT-IR spectra. The difference in the crystallography temperature (CP1 in 290 K and CP2 in 200 K) causes slight differences in the bond lengths and angles in the geometry center. 3D Hirshfeld surface and 2D fingerprint plots analyses offer the predominance contribution of H–C⋯H (18.9%) for CP1 and H–C⋯H (19.9%) for CP2. The most obvious distinguishes in the interactions in both CPs are C–N (8.4%) and (3.3%), Cu–S (4.8%) and (0.0%), Cu–N (3.3%), and (11.4%) for CP1 and CP2, respectively. Due to the determined asymmetric unit of the crystal structure of both CPs, there are some distinctions in the HS and 2DFP analysis of the CPs. Solvent-free decomposition of CP1 crystals at 750 ℃ led to the synthesis of CuO nanoparticles with particles size of ~12 nm.

Keywords


References: 
1. Kleemiss, F., Dolomanov, O.V., Bodensteiner, M., et al. "Accurate crystal structures and chemical properties from NoSpherA2", Chem. Sci., 12(5), pp. 1675- 1692 (2021).
2. Chen, L.-Q. and Gu, Y., 27 - Computational Metallurgy, in: D.E. Laughlin, K. Hono (Eds.), Physical Metallurgy (Fifth Edition), Elsevier, Oxford, pp. 2807- 2835 (2014).
3. Rutherford, J.S., Crystal Structure, in: F. Bassani, G.L. Liedl, P. Wyder (Eds.), Encyclopedia of Condensed Matter Physics, Elsevier, Oxford, pp. 289-294 (2005).
4. Ludescher, L., Dirin, D.N., Kovalenko, M.V., et al. "Impact of crystal structure and particles shape on the photoluminescence intensity of CdSe/CdS core/shell nanocrystals", Front. Chem., 6, pp. 1-11 (2019).
5. Muller, P.C., Ertural, C., Hempelmann, J., et al. "Crystal orbital bond index: Covalent bond orders in solids", J. Phys. Chem. C, 125(14), pp. 7959-7970 (2021).
6. Hughes, S.E., Chapter 4 - Materials and Their Weldability, in: S.E. Hughes (Ed.), A Quick Guide to Welding and Weld Inspection, Woodhead Publishing, pp. 36-48 (2009).
7. Purushottam Raj Purohit, R.R.P., Arya, A., Bojjawar, G., et al. "Revealing the role of microstructure architecture on strength and ductility of Ni microwires by in-situ synchrotron X-ray diffraction", Sci. Rep., 9(1), p. 79 (2019).
8. Saadatian, M.H., Shahverdizadeh, G.H., Babazadeh, M., et al. "The effect of ultrasonic irradiation power and initial concentration on the particle size of nano copper(II) coordination polymer: Precursors for preparation of CuO nanostructures", J. Polym. Res., 29(2), p. 57 (2022).
9. Sun, Y., Xing, D.-J., Wei, J.-J., et al. "A new Cu(II)- based coordination polymer: application values on liver cancer through down-regulating relative expression of miRNA9", Polym. Bull., 80(1), pp. 607-619 (2023).
10. Tourani, H., Naimi-Jamal, M.R., Panahi, L., et al. "Nanoporous metal-organic framework Cu2(BDC)2(DABCO) as an efficient heterogeneous catalyst for one-pot facile synthesis of 1,2,3-triazole derivatives in ethanol: Evaluating antimicrobial activity of the novel derivatives", Scientia Iranica, 26(3), pp. 1485-1496 (2019).
11. Hassanein, K., Cappuccino, C.P., Amo-Ochoa, P., et al. "Multifunctional coordination polymers based on copper(I) and mercaptonicotinic ligands: synthesis, and structural, optical and electrical characterization", Dalton Trans., 49(30), pp. 10545-10553 (2020).
12. Siddiqui, S.A., Prado-Roller, A., and Shiozawa, H. "Room temperature synthesis of a luminescent crystalline Cu-BTC coordination polymer and metalorganic framework", Mater. Adv., 3(1), pp. 224-231 (2022).
13. Bagherzadeh, M., Mahmoudi, H., Amini, M., et al. "SBA-15-supported copper(II) complex: An efficient heterogeneous catalyst for azide-alkyne cycloaddition in water", Scientia Iranica, 25(3), pp. 1335-1343 (2018).
14. Moraes, L.C., de Souza, G.P., Fajardo, H.V., et al. "1D coordination polymer based on copper(II)-containing tetrameric 1,2,3-triazole ligand from click chemistry: Magnetic and catalytic properties", Inorganica Chim. Acta, 489, pp. 93-99 (2019).
15. Najafi, M., Abbasi, A., and Masteri-Farahani, M.  Preparation of MoO3/CuMoO4 nanoparticles as selective catalyst for olefin epoxidation", Scientia Iranica, 24(3), pp. 1203-1208 (2017).
16. Etefagh, R., Rozati, S.M., Azhir, E., et al. "Synthesis and antimicrobial properties of ZnO/PVA, CuO/PVA, and TiO2/PVA nanocomposites", Scientia Iranica, 24(3), pp. 1717-1723 (2017).
17. Xiong, R.G., Xue, X., Zhao, H., et al. "Novel, acentric metal-organic coordination polymers from hydrothermal reactions involving in situ ligand synthesis", Angew Chem. Int. Ed. Engl., 41(20), pp. 3800-3 (2002).
18. Liu, J.-C., Huang, J.-S., and You, X.-Z. "Different oxidation states of copper(I, I/II, II) thiocyanate complexes containing 1,2,4-triazole as a bridging ligand: Syntheses, crystal structures, and magnetic properties of 2-D polymer CuI(admtrz)SCN, linear trinuclear [CuI 2CuII(admtrz)6(SCN)2](ClO4)2, and triangular trinuclear [CuII 3 (admtrz)4(SCN)3(3- OH)(H2O)](ClO4)2.H2O (admtrz = 4-Amino-3,5- dimethyl-1,2,4-triazole)", Inorg. Chem., 42(1) pp. 235-243 (2003).
19. Kulkarni, P., Padhye, S., Sinn, E., et al. "Comparative studies on copper(I) complexes: synthesis, Xray crystallography and electrochemical properties of [CuI(dafone)nX] complexes (dafone=4,5-diaza- uoren- 9-one, X=Br, I, SCN)", Inorganica Chim. Acta, 332(1), pp. 167-175 (2002).
20. Ramezani, B., Hossein Shahverdizadeh, G., Edjlali, L., et al. "Sonochemical synthesis of differently-sized nanoparticles of a silver(I) compound: An optical, anticancer, and thermal activity evaluation study",Chemistry Select, 5(42), pp. 13081-13090 (2020).
21. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al. "OLEX2: a complete structure solution, refinement and analysis program", J. App. Crystallogr., 42(2), pp. 339-341 (2009).
22. Sheldrick, G. "Crystal structure refinement with SHELXL", Acta Crystallogr. C, 71(1), pp. 3-8 (2015).
23. Demko, Z.P. and Sharpless, K.B. "Preparation of 5- substituted 1H-tetrazoles from nitriles in water", J. Org. Chem., 66(24), pp. 7945-7950 (2001).
24. Dyga, M., Hayrapetyan, D., Rit, R.K., et al.  Electrochemical ipso-thiocyanation of arylboron compounds", Adv. Synth. Catal., 361(15), pp. 3548-3553 (2019).
25. Jazdzewski, B.A., Holland, P.L., Pink, M., et al. "Three-coordinate copper(II)-phenolate complexes", Inorg. Chem., 40(24), pp. 6097-6107 (2001).
26. Katari, M., Payen de la Garanderie, E., Nicol, E., et al. "Combining gas phase electron capture and IRMPD action spectroscopy to probe the electronic structure of a metastable reduced organometallic complex containing a non-innocent ligand", Phys. Chem. Chem. Phys., 17(39), pp. 25689-25692 (2015).
27. Mohamed, G.G. and El-Gamel, N.E.A. "Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and dl-phenylalanine", Spectrochim. Acta A Mol. Biomol. Spectrosc., 60(13), pp. 3141-3154 (2004).
28. Gao, S., Fan, R.-Q., Qiang, L.-S., et al. "Effects of solvents and temperature on the luminescence properties of Cd-isonicotinic acid frameworks based on mono-, bi-, and trinuclear cluster units", CrystEngComm, 16(6), pp. 1113-1125 (2014).
29. Pascoe, D.J., Ling, K.B., and Cockroft, S.L. "The origin of chalcogen-bonding interactions", J. Am. Chem. Soc., 139(42), pp. 15160-15167 (2017).
30. Liu, L., Sun, Y., Wei, S., et al. "Solvent effect on the absorption and  fluorescence of ergone: Determination of ground and excited state dipole moments", Spectrochim. Acta A Mol. Biomol. Spectrosc., 86, pp. 120- 123 (2012).
31. Tsao, J.Y., Chowdhury, S., Hollis, M.A., et al. "Ultrawide-bandgap semiconductors: Research opportunities and challenges", Adv. Electron. Mater, 4(1), 1600501 (2018).
32. Batsanov, A.S., X-ray Diffraction, Small Molecule Applications, in: J.C. Lindon, G.E. Tranter, D.W. Koppenaal (Eds.), Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Academic Press, Oxford, pp. 656-666 (2017).
33. Akhileshwari, P., Kiran, K.R., Sridhar, M.A., et al. "Synthesis, crystal structure characterization, Hirshfeld surface analysis, and Quantum chemical computations of Ethyl 5-(thiophene-2-carbonyl)thiazole-4- carboxylate", J. Mol. Struct., 1242, 130747 (2021).
34. Husain, A., Kumar, G., Sood, T., et al. "Synthesis, structural characterization and DFT analysis of an unusual tryptophan copper(II) complex bound via carboxylate monodentate coordination: Tetraaquabis(ltryptophan) copper(II) picrate", Inorganica Chim. Acta, 482, pp. 324-332 (2018).
35. Laplaza, R., Peccati, F., Boto, C., et al. "NCIPLOT and the analysis of noncovalent interactions using the reduced density gradient", Wiley Interdiscip. Rev. Comput. Mol. Sci., 11, p. 1497 (2021).
36. Liu, Y., Fan, J., Xue, Z., et al. "Crystal structure and noncovalent interactions of heterocyclic energetic molecules", Molecules, 27, p. 4969 (2022).
37. Contreras-Garcia, J., Johnson, E.R., Keinan, S., et al. "NCIPLOT: A program for plotting noncovalent interaction regions", J. Chem. Theory Comput., 7, pp. 625-632 (2011).
38. Gholivand, K., Farshadfar, K., Roe, S.M., et al. "Investigation of structure-directing interactions within copper(I) thiocyanate complexes through X-ray analyses and non-covalent interaction (NCI) theoretical approach", CrystEngComm, 18, pp. 7104-7115 (2016).
39. Boto, R.A., Peccati, F., Laplaza, R., et al. "NCIPLOT4: Fast, robust, and quantitative analysis of noncovalent interactions", J. Chem. Theory Comput., 16, pp. 4150-4158 (2020).
40. Zheng, L. and Liu, X. "Solution-phase synthesis of CuO hierarchical nanosheets at near-neutral pH and near-room temperature", Mater. Lett., 61(11), pp. 2222-2226 (2007).
41. Manjari, G., Saran, S., Arun, T., et al. "Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract", J. Saudi Chem. Soc., 21(5), pp. 610-618 (2017).
42. Bhunia, A.K. and Saha, S. "CuO nanoparticle-protein bioconjugate: characterization of CuO nanoparticles for the study of the interaction and dynamic of energy transfer with bovine serum albumin", Bio- NanoScience, 10(1), pp. 89-105 (2020).
43. Dagher, S., Haik, Y., Ayesh, A.I., et al. "Synthesis and optical properties of colloidal CuO nanoparticles", J. Lumin., 151, pp. 149-154 (2014).
Volume 30, Issue 6
Transactions on Chemistry and Chemical Engineering (C)
November and December 2023
Pages 2011-2028
  • Receive Date: 26 February 2022
  • Revise Date: 12 December 2022
  • Accept Date: 30 January 2023