References:
1.Zhang, P., Wu, X., and Wang, X. “Short–term loadforecasting based on big data technologies,” CSEEJournal of Power and Energy Systems, 1(3), pp. 59-67(2015). DOI: 10.17775/CSEEJPES.2015.00036.
2.Wang, Y., Chen, Q., Hong, T., et al. “Review of smartmeter data analytics: applications, methodologies, andchallenges”, IEEE Trans. Smart Grid, 10(3), pp. 3125-3148 (2018). DOI: 10.1109/TSG.2018.2818167.
3.Tian, C., Ma, J., Zhang, C., et al. “A deep neuralnetwork for short- term load forecast based on LSTMand Convolution neural network”, Energies, 11, 3493(2018). DOI: 10.3390/en11123493.
4.Singh, N., Mohanty, S.R., and Shukla, R.D., “Shortterm electricity price forecast based on environmentally adapted generalized neuron”, Energy, 125, pp. 127–39(2017). DOI: 10.1016/j.energy.2017.02.094.
5.Kazemzadeh, M.R., Amjadian, A., and Amraee, T.“Long term electric peak load forecasting of Azarbaijan regional electricity grid”, Iranian Conference onElectrical Engineering (ICEE) (2020). DOI: 10.1016/j.jup.2019.04.001.
6.Hernandez, L., Baladron, C., AguiarCarro, J.M, et al.“A survey on electric power demand forecasting:Future trends in smart grids, microgrids, and smartbuildings”, IEEE Commun. Surv. Tutorial, 16, pp.1460-1495 (2014). DOI: 10.1109/SURV.2014.032014.00094.
7.Moghram, I. and Rahman, S. ``Analysis and evaluationof five short-term load forecasting techniques", IEEETrans. Power Syst., 4(4), pp. 1484-1491 (1989). DOI: 10.1109/59.41700.
8.Alex, D. and Timothy, C. “A regression-based approach to short term system load forecasting”, IEEE Trans. onPower Syst. 5(4), pp. 1535–1550 (1990). DOI: 10.1109/59.99410.
9.Hagan, M.T. and Behr, S.M. “The time series approachto short term load forecasting”, IEEE Trans. of PowerSyst. PWRS-2(3) (1987). DOI: 10.1109/TPWRS.1987.4335210.
S. Rai and M. De /Scientia Iranica (2025) 32(1): 641010.Rahman, S. and Drezga, I. “Identification of a standardfor comparing short-term load forecasting techniques”,Electric Power Systems Research, 25(3), pp. 149-158(1992). DOI: 10.1016/0378-7796(92)90013-Q.
11.Li, Y., Han, D., and Yan, Z. “Long-term system loadforecasting based on data-driven linear clusteringmethod”, J. Mod. Power Syst. Clean Energy, 6, pp.306–316 (2018). DOI: 10.1007/s40565-017-0288-x.
12.Ji, P.R., Xiong, D., Wang, P., et al. “A study onexponential smoothing model for load forecasting”, InProceedings of 2012 Power and Energy EngineeringConference, Shanghai, pp. 1–4 (2012). DOI: 10.1109/APPEEC.2012.6307555.
13.Gob, R., Lurz, K., and Pievatolo, A. “Electrical loadforecasting by exponential smoothing with covariates”,Applied Stochastic Models in Business and Industry,29(6), pp. 629–645 (2013). DOI: 10.1002/asmb.2008.
14.Filho, K.N., Lotufo, A.D.P., and Minussi, C.R.“Multinodal load forecasting using a general regressionneural network”, IEEE Trans. on Power Delivery,26(4), pp. 2862-2869 (2011). DOI: 10.1109/TPWRD.2011.2166566.
15.Zongying, L., Loo, C.K., and Pasupa, K. “A novelerror-output recurrent two-layer extreme learningmachine for multi-step time series prediction”,Sustainable Cities and Society, 66 (2021). DOI:10.1016/j.scs.2020.102613.
16.Zhang, X., Wang, J., and Zhang, K. “Short-termelectric load forecasting based on singular spectrumanalysis and support vector machine optimized byCuckoo search algorithm”, Electric Power System andResearch, 146, pp. 270-285 (2017). DOI: 10.1016/j.epsr.2017.01.035.
17.Ceperic, E., Ceperic, V., Member, S., et al. “A strategyfor short-term load forecasting by support vectorregression machines”, IEEE Trans. Power System,28(4), pp. 4356–4364 (2013). DOI: 10.1109/TPWRS.2013.2269803.
18.Hamed H.H. Aly, ``A proposed intelligent short-termload forecasting hybrid models of ANN, WNN and KFbased on clustering techniques for smart grid’’, ElectricPower Systems Research, 182 (2020). DOI: 10.1016/j.epsr.2019.106191.
19.Li, S., Wang, P., and Goel, L. “Short-term loadforecasting by wavelet transform and evolutionaryextreme learning machine”, Electric Power SystemsResearch. 122, pp. 96–103 (2015). DOI: 10.1016/j.epsr.2015.01.002.
20.Hendawia, M.E. and Wanga, Z. “An ensemble methodof full wavelet packet transforms and neural networkfor short term electrical load forecasting”, ElectricPower Systems Research, 182, pp. 1-13 (2020). DOI: 10.1016/j.epsr.2020.106265.
21.Polikar, R. “Ensemble based systems in decisionmaking”, IEEE Cicuits and Systems Magazine, 6(3),pp. 21-45 (2006). DOI: 10.1109/MCAS.2006.1688199.
22.Khwajaa, A.S., Anpalagana, A., Naeemb, M., et.al.“Joint bagged-boosted artificial neural networks: Usingensemble ML to improve short-term electricity loadforecasting”, Electric Power Systems Research. 179(2020). DOI: 10.1016/j.epsr.2019.106080.
23.Nazar, M.S., Fard, A.E., Heidari, A., et al. “Hybridmodel using three-stage algorithm for simultaneousload and price forecasting”, Electric Power SystemsResearch, 165, pp. 214-228 (2018). DOI: 10.1016/j.epsr.2018.09.004.
24.Laouafi, A. Mordjaoui, M., Haddad, S., et al. “Onlineelectricity demand forecasting based on an effectiveforecast combination methodology’’, Electric PowerSystems Research, 148, pp. 35–47 (2017). DOI:10.1016/j.epsr.2017.03.016.
25.Palaninathan, A.C., Qiu, X., and Suganthan, P.N.``Heterogeneous ensemble for power load demandforecasting”, IEEE Region 10 Conf (TENCON),Singapore, pp. 2040-2045 (2016). DOI: 10.1109/EPE.2016.7521771.
26.Dudek, G. “Heterogeneous ensembles for short-termelectricity demand forecasting”, 17th InternationalScientific Conference on Electric Power Engineering,Prague, pp. 1-6 (2016). DOI: 10.1109/EPE.2016.7521771.
27.Wang, L., Mao, S., Wilamowski, B.M., et al.``Ensemble Learning for Load Forecasting”, in IEEETransactions on Green Communications andNetworking, 4(2), pp. 616-628 (2020). DOI: 10.1109/TGCN.2020.2987304.
28.Lee, J. and Cho, Y. “National-scale electricity peak load forecasting: Traditional, machine learning, or hybridmodel?”, Energy, 239, 122366 (2021). DOI:10.1016/j.energy.2021.122366.
29.Rai, S. and De, M. “Analysis of classical and machinelearning based short-term and mid-term loadforecasting for smart grid”, International Journal ofSustainable Energy, 40(9), pp. 821-839 (2021). DOI: 10.1080/14786451.2021.1873339.