References:
1.Wylie, E.B., Streeter, V.L., and Suo, L. Fluid Transients inSystems, 464, Englewood Cliffs, NJ: Prentice Hall (1993). https://books.google.com/books?id=Ep9RAAAAMAAJ.
2.Wylie, E.B. “Fundamental equations of waterhammer”, Journalof Hydraulic Engineering, 110(4), pp. 539-542 (1984).
https://doi.org/10.1061/(ASCE)0733-9429(1984)110:4(539).
3.Popescu, M., Arsenie, D., and Vlase, P. Applied HydraulicTransients: For Hydropower Plants and Pumping Stations, CRC Press (2003). https://doi.org/10.1080/00221680509500128.
4.Rohani, M. and Afshar, M.H. “Simulation of transient flowcaused by pump failure: Point-Implicit method ofcharacteristics”, Annals of Nuclear Energy, 37(12), pp.1742-1750(2010). http://dx.doi.org/10.1016/j.anucene.2010.07.004.
5.Chaudhry, M.H. Applied Hydraulic Transients, pp. 397-401,Springer, London (1979).https://books.google.com/books?id=qfRRAAAAMAAJ.
6.Chaudhry, M.H. Applied Hydraulic Transients, 3rd Ed., Springer, New York (2013).
7.Larock, B.E., Jeppson, R.W., and Watters, G.Z. Hydraulics ofPipeline Systems, pp. 482-486, CRC Press, New York (1999).https://books.google.com/books?id=RAMX5xuXSrUC.
8.Afshar, M.H. and Rohani, M. “Water hammer simulation byimplicit method of characteristic”, International Journal ofPressure Vessels and Piping, 85(12), pp. 851-859 (2008).https://doi.org/10.1016/j.ijpvp.2008.08.006.
9.Bostan, M., Azimi, A.H., Akhtari, A.A., et al. “An implicitapproach for numerical simulation of water hammer inducedpressure in a straight pipe”, Water ResourcesManagement, 35(15), pp. 5155-5167 (2021). https://doi.org/10.1007/s11269-021-02992-3.
10.Bostan, M., Akhtari, A.A., and Bonakdari, H. “Deriving thegoverning equation for a shock damper to model the unsteadyflow caused by sudden valve closure and sudden demandchange”, Journal of Water Supply: Research and Technology—AQUA, 67(2), pp. 202-210 (2018).https://doi.org/10.2166/aqua.2017.116.
11.Afshar, M.H. and Rohani, M. “Optimal operation of pipelinesystems using genetic algorithm”, In 2009 IEEE Congress onEvolutionary Computation, pp. 1399-1405 (2009).https://doi.org/10.1109/CEC.2009.4983107.
12.Djebedjian, B., Mohamed, M.S., Mondy, A.G., et al. “Networkoptimization for steady flow and water hammer using geneticalgorithms”, In Ninth International Water TechnologyConference, pp. 1101-1115 (2005).
13.Skulovich, O., Perelman, L., and Ostfeld, A. “Bi-leveloptimization of closed surge tanks placement and sizing in waterdistribution system subjected to transient events”, ProcediaEngineering, 89, pp. 1329-1335 (2014).https://doi.org/10.1016/j.proeng.2014.11.449.
14.Fathi-Moghadam, M., Haghighipour, S., and Vali Samani, H.M.“Design-variable optimization of hydropower tunnels and surgetanks using a genetic algorithm”, Journal of Water ResourcesPlanning and Management, 139(2), pp. 200-208 (2013). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000243.
15.Lima, G.M., Junior, E.L., and Brentan, B.M. “Selection andlocation of pumps as turbines substituting pressure reducingvalves”, Renewable Energy, 109, pp. 392-405 (2017).https://doi.org/10.1016/j.renene.2017.03.056.
16.Chamani, M.R., Pourshahabi, S., and Sheikholeslam, F. “Fuzzygenetic algorithm approach for optimization of surgetanks”, Scientia Iranica, 20(2), pp. 278-285 (2013).https://doi.org/10.1016/j.scient.2013.04.002.
17.Jung, B.S. and Karney, B.W. “Hydraulic optimization of transient protection devices using GA and PSO approaches”, Journal ofWater Resources Planning and Management, 132(1), pp. 44-52(2006).https://doi.org/10.1061/(ASCE)0733-9496(2006)132:1(44).
18.Skulovich, O., Perelman, L., and Ostfeld, A. “Optimization ofsurge protection devices in water distribution systems”, In WorldEnvironmental and Water Resources Congress, pp. 495-504(2014). https://doi.org/10.1061/9780784413548.053.
19.Syed, J.L. and Wu, Z.Y. “Transient effects of surge vessel sizesand locations in a water transmission line”, In WorldEnvironmental and Water Resources Congress 2012: CrossingBoundaries, pp. 3033-3043 (2012). https://doi.org/10.1061/9780784412312.305.
20.Bostan, M., Afshar, M.H., and Khadem, M. “Extension of thehybrid linear programming method to optimize simultaneouslythe design and operation of groundwater utilizationsystems”, Engineering Optimization, 47(4), pp. 550-560 (2015).https://doi.org/10.1080/0305215X.2014.905553.
21.Bostan, M., Afshar, M.H., Khadem, M., et al. “A hybrid MILP-LP-LP approach for the optimal design and operation ofunconfined groundwater utilization systems”, Journal of WaterSupply: Research and Technology—AQUA, 65(3), pp. 208-219(2016). https://doi.org/10.2166/aqua.2016.028.
22.Jung, B.S. and Karney, B.W. “Optimum selection of hydraulicdevices for water hammer control in the pipeline systems usinggenetic algorithm”, In Fluids Engineering Division SummerMeeting, 36967, pp. 2877-2883 (2003).https://doi.org/10.1115/FEDSM2003-45262.
23.Kim, S.H. “Design of surge tank for water supply systems usingthe impulse response method with the GA algorithm”, Journal of Mechanical Science and Technology, 24(2), pp. 629-636 (2010).https://doi.org/10.1007/s12206-010-0108-y.
24.Skulovich, O., Sela Perelman, L., and Ostfeld, A. “Optimalclosure of system actuators for transient control: an analytical approach”, Journal of Hydroinformatics, 18(3), pp. 393-408 (2016). https://doi.org/10.2166/hydro.2015.121.
25.Skulovich, O., Bent, R., Judi, D., et al. “Piece‐wise mixed integer programming for optimal sizing of surge control devices in water distribution systems”, Water Resources Research, 51(6), pp.4391-4408 (2015). https://doi.org/10.1002/2014WR016256.
26.Bostan, M., Akhtari, A.A., Bonakdari, H., et al. “Investigation ofa new shock damper system efficiency in reducing water hammer excess pressure due to the sudden closure of a control valve”, ISH Journal of Hydraulic Engineering, 26(3), pp. 258-266 (2020).https://doi.org/10.1080/09715010.2018.1479665.
27.Bostan, M., Akhtari, A.A., Bonakdari, H., et al. “Optimal designfor shock damper with genetic algorithm to control water hammereffects in complex water distribution systems”, Water ResourcesManagement, 33(5), pp. 1665-1681 (2019 .)http://dx.doi.org/10.1007/s11269-019-2192-9.
28.Ishaque, K., Salam, Z., Amjad, M., et al. “An improved particleswarm optimization (PSO)–based MPPT for PV with reducedsteady-state oscillation”, IEEE Transactions on PowerElectronics, 27(8), pp. 3627-3638 (2012).https://doi.org/10.1109/TPEL.2012.2185713.
29.Afshar, M. and Mahjoobi, J. “Optimal design of pumped pipeline systems using genetic algorithm and mathematicaloptimization”, Journal of Water and Wastewater, 18(4), pp. 35-48(2008). https://doi.org/ 10.1109/CEC.2009.4983107.
30.Martin-Candilejo, A., Santillan, D., Iglesias, A., et al.“Optimization of the design of water distribution systems forvariable pumping flow rates”, Water, 12(2), p. 359 (2020).https://doi.org/10.3390/w12020359.
31.Moghaddas, S.M.J., Samani, H.M., and Haghighi, A. “Transientprotection optimization of pipelines using air-chamber and air-inlet valves”, KSCE Journal of Civil Engineering, 21(5), pp.1991-1997 (2017). https://doi.org/10.1007/s12205-016-0836-4.
32.Fu, X., Li, D., Wang, H., et al. “Multi-objective optimization ofguide vane closure scheme in clean pumped-storage power plant with emphasis on pressure fluctuations”, Journal of EnergyStorage, 55, 105493 (2022). https://doi.org/10.1016/j.est.2022.105493.
33.Huang, Y. Zheng, F., Duan, H.F., et al. “Multi-objective optimaldesign of water distribution networks accounting for transientimpacts”, Water Resources Management, 34, pp. 1517-1534(2020). https://doi.org/10.1007/s11269-020-02517-4.
34.Lai, X., Li, C., Zhou, J., et al. “A multi-objective optimizationstrategy for the optimal control scheme of pumped hydropowersystems under successive load rejections”, Applied Energy, 261,114474 (2020). https://doi.org/10.1016/j.apenergy.2019.114474.
35.Rezghi, A., Riasi, A., and Tazraei, P. “Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and thesurge tank position”, Renewable Energy, 148, pp. 478-491(2020). https://doi.org/10.1016/j.renene.2019.10.054.
36.Ye, J., Zeng, W., Zhao, Z., et al. “Optimization of pump turbineclosing operation to minimize water hammer and pulsatingpressures during load rejection”, Energies, 13, 1000 (2020).https://doi.org/10.3390/en13041000.
37.Rao, S.S. Engineering Optimization: Theory and Practice, JohnWiley and Sons, Singapore (2019). https://www.wiley.com/enus/Engineering+Optimization%3A+Theory+and+Practice%2C+5th+Edition-p-9781119454793.