Alumina-PEBA/PSf Multilayer composite membranes for CO2 separation: Experimental and molecular simulation studies

Document Type : Article

Authors

- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran - Nanostructured Materials Research Center, Sahand University of Technology, Tabriz, Iran

Abstract

In this research, Polyether block amide (PEBA) containing different loadings of α-Al2O3 particles was deposited on top of the polysulfone (PSf ) supports to form PEBA 1657‒α-Al2O3/PSf multilayer composite mixed matrix membranes (MCMMMs). Multilayer Composite structure was used to overcome the sedimentation of fillers in the polymer matrix. Moreover, alpha phase of the Al2O3 particles was applied to improve the distribution of these particles at higher loadings. SEM, XRD, and FTIR tests were applied to study morphology, crystalline structure, and chemical structure of the membranes, respectively. Gas permeation properties of the membranes were also measured using three different pure gases (CO2, CH4, and N2) at the pressure of 7 bar and temperature of 25 ºC. CO2 permeance and ideal selectivity of CO2/CH4, and CO2/N2 for the optimum MCMMM with 20 wt% loading of α-Al2O3 particles were 25% (117.5 Barrer), 81.5 % (32), and 86.5% (57) higher than that of multilayer composite neat membrane (MCNM), respectively. The molecular simulation results confirmed the results of the experimental studies and approved that the α-Al2O3 particles are right candidates for improving the PEBA performance for CO2 separation.

Keywords


References:
1. Ilyas, A., Muhammad, N., and Amjad, M. "Effect of zeolite surface modification with ionic liquid [APTMS][Ac] on gas separation performance of mixed matrix membranes", Sep Purif Technol., 205, pp. 176- 183 (2018). https://doi.org/10.1016/j.seppur.2018.05.040. 
2. Azizi, N., Mahdavi, HR., Isanejad, M., et al. "Effects of low and high molecular mass PEG incorporation into different types of poly(ether-b-amide) copolymers on the permeation properties of CO2 and CH4", J Polym Res., 24, p. 141 (2017). https:// 10.1007/s10965-017-1297-1.
3. Tu, Z., Liu, P., Zhang, X., et al. "Highly-selective separation of CO2 from N2 or CH4 in task-specific ionic liquid membranes: Facilitated transport and saltingout effect", Sep. Purif. Technol., 254, pp. 1-9 (2021). https://doi.org/10.1016/j.seppur.2020.117621.
4. Fan, Y., Yu, H., Xu, S., et al. "Zn(II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations", J. Memb. Sci., 597, 117775 (2020). https://doi.org/10.1016/j.memsci.2019.117775.
5. Yoon, K.W., Kim, H., Kang, Y.S., et al. "1-Butyl-3- methylimidazolium tetra uoroborate/zinc oxide composite membrane for high CO2 separation performance", Chem Eng J., 320, pp. 50-54 (2017). https://doi.org/10.1016/j.cej.2017.03.026.
6. Kanehashi, S., Aguiar, A., Lu, H.T., et al. "Effects of industrial gas impurities on the performance of mixed matrix membranes", J Membr Sci., 549, pp. 686-692 (2018). https://doi.org/10.1016/j.memsci.2017.10.056.
7. Asghari, M., Mosadegh, M., and RiasatHarami, H. "Supported PEBA-zeolite 13X nano-composite membranes for gas separation: Preparation, characterization and molecular dynamics simulation", Chem Eng Sci, 187, pp. 67-78 (2018). https://doi.org/10.1016/j.ces.2018.04.067.
8. Jiang, Y., Liu, C., Caro, J., et al. "A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance", Microporous Mesoporous Mater, 274, pp. 203-211 (2019). https://doi.org/10.1016/j.micromeso.2018.08.003. 
9. Karamouz, F., Maghsoudi, H., and Yegani, R. "Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation", J Nat Gas Sci Eng, 35, pp. 980-985 (2016). https://doi.org/10.1016/j.jngse.2016.09.036.
10. Momeni, M., Kojabad, M.E., Khanmohammadi, S., et al. "Impact of support on the fabrication of poly (ether-b-amide) composite membrane and economic evaluation for natural gas sweetening", J Nat Gas Sci Eng, 62, pp. 236-246 (2019). https://doi.org/10.1016/j.jngse.2018.12.014.
11. Azizi, N., Mohammadi, T., and Behbahani, R.M. "Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4", J Nat Gas Sci Eng, 37, pp. 39-51 (2017). https://doi.org/10.1016/j.jngse.2016.11.038.
12. Ghasemi, E., Omidkhah, M., and Ebadi, A. "Preparation and characterization of novel Ionic liquid/Pebax membranes for efficient CO2/light gases separation", J Ind Eng Chem, 5, pp. 77-89 (2017). http://dx.doi.org/10.1016/j.jiec.2017.02.017.
13. Ghadimi, A., Amirilargani, M., Mohammadi, T., et al. "Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of CO2/H2(syngas application)", J Membr Sci, 458, pp. 14-26 (2014). https://doi.org/10.1016/j.memsci.2014.01.048.
14. Samarasinghe, S.A.S.C., Chuah, C.Y., Yang, Y., et al. "Tailoring CO2/CH4 separation properties of mixedmatrix membranes via combined use of two- and threedimensional metal-organic frameworks", J Membr Sci., 557, pp. 30-37 (2018). https://doi.org/10.1016/j.memsci.2018.04.025.
15. Li, W., Samarasinghe, S.A.S.C., and Bae, T. "Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8", J Ind Eng Chem., 67, pp. 156-163 (2018). https://doi.org/10.1016/j.jiec.2018.06.026.
16. Hwang, S., Seok, W., Jin, S., et al. "Hollow ZIF- 8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation", J Membr Sci., 480, pp. 11-19 (2015). https://doi.org/10.1016/j.memsci.2015.01.038.
17. Zhang, X., Zhang, T., Wang, Y., et al. "Mixedmatrix membranes based on Zn/Ni-ZIF-8-PEBA for high performance CO2 separation", J Membr Sci., 560, pp. 38-46 (2018). https://doi.org/10.1016/j.memsci.2018.05.004.
18. Jomekian, A., Bazooyar, B., Mosayebi, R., et al. "Ionic liquid-modified Pebax® 1657 membrane filled by ZIF- 8 particles for separation of CO2 from CH4, N2 and H2", J Membr Sci., 524, pp. 652-662 (2017). https://doi.org/10.1016/j.memsci.2016.11.065.
19. Yong, Z., Mata, V., and Rodrigues, A.E. "Adsorption of carbon dioxide on basic alumina at high temperatures", J Chem Eng. Data, 45, pp. 1093-1095 (2000). https://doi.org/10.1021/je000075i.
20. Esmaili, J. and Ehsani, M.R. "Study on the effect of preparation parameters of K2CO3/Al2O3 sorbent on CO2 capture capacity at  flue gas operating conditions", J Encapsulation Adsorpt Sci, 3, pp. 57-63 (2013). https://doi.org/10.4236/jeas.2013.32007.
21. Matteucci, S.T. "Gas transport properties of reverse selective nanocomposite materials", University of Texas, Austin, United States (2007). http://hdl.handle.net/2152/3631.
22. Azizi, N., Mohammadi, T., and Behbahani, R.M. "Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation", Chem. Eng. Res. Des., 117, pp. 177-189 (2017). https://doi.org/10.1016/j.cherd.2016.10.018. 
23. Zhu, H., Yuan, J., Zhao, J., et al. "Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes", Sep Purif Technol., pp. 78-86 (2019). https://doi.org/10.1016/j.seppur.2018.02.020.
24. Song, C., Li, R., Fan, Z., et al. "CO2/N2 separation performance of Pebax /MIL-101 and Pebax /NH2 - MIL- 101 mixed matrix membranes and intensi fication via sub-ambient operation", Sep. Purif. Technol., 238, 116500 (2020). https://doi.org/10.1016/j.seppur.2020.116500.
25. Azizi, N., Mohammadi, T., and Behbahani, R.M. "Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance", J Energy Chem., 26, pp. 454-465 (2017). https://doi.org/10.1016/j.jechem.2016.11.018.
26. Asghari, M., Sheikh, M., and Dehghani, M. "Comparison of ZnO nanofillers of different shapes on physical, thermal and gas transport properties of PEBA membrane: experimental and molecular simulation", J Chem Technol Biotechnol., 93, pp. 2602-2616 (2018). https://doi.org/10.1002/jctb.5614.
27. Ghadimi, A., Mohammadi, T., and Kasiri, N. "Gas permeation, sorption and diffusion through PEBA/SiO2 nanocomposite membranes (chemical surface modification of nanopar ticles)", Int J Hydrogen Energy, 40, pp. 9723-9732 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.013.
28. Ghadimi, A., Mohammadi, T., and Kasiri, N. "A novel chemical surface modification for the fabrication of PEBA/SiO2 nanocomposite membranes to separate CO2 from syngas and natural gas streams", Ind. En. Chem. Res., 53, pp. 17476-17486 (2014). https://doi.org/10.1021/ie503216p.
29. Mahdavi, H.R., Azizi, N., and Mohammadi, T. "Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/ -Al2O3 membrane for CO2/CH4 separation using response surface methodology", J. Polym. Res., 24(67) (2017). https://doi.org/10.1007/s10965-017-1228-1.
30. Chung, T.S., Jiang, L.Y., Li, Y., et al. "Mixed Matrix Membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, pp. 483-507 (2007). https://doi.org/10.1016/J.PROGPOLYMSCI.
2007.01.008. 
31. Amini, Z. and Asghari, M. "Preparation and characterization of ultra-thin poly ether block amide/nanoclay nanocomposite membrane for gas separation", Appl. Clay Sci., 166, pp. 230-241 (2018). https://doi.org/10.1016/j.clay.2018.09.025.
32. Zhuang, G.L., Wey, M.Y., and Tseng, H.H. "The density and crystallinity properties of PPO-silica mixedmatrix membranes produced via the in situ sol-gel method for H2/CO2 separation. II: Effect of thermal annealing treatment", Chem Eng Res Des, 104, pp. 319-32 (2015).
33. Laghaei, M., Sadeghi, M., Ghalei, B., et al. "The role of compatibility between polymeric matrix and silane coupling agents on the performance of mixed matrix membranes: polyethersulfone/MCM-41", J. Membr. Sci., 513, pp. 20-32 (2016).
34. Kojabad, M.E., Babaluo, A., Tavakoli, A., et al. "Comparison of acidic and basic ionic liquids effects on dispersion of alumina particles in Pebax composite membranes for CO2/N2 separation: Experimental Study and molecular simulation", J. Environ. Chemical. Engin., 9, 118494 (2021). https://doi.org/10.1016/j.seppur.2021.118494.
35. Kayser, M.J., Reinholdt, M.X., and Kaliaguine, S. "Amine grafted silica/SPEEK nanocomposites as proton exchange membranes", J. Phys. Chem., B, 114, pp. 8387-95 (2010).
36. Shamsabadi, A.A., Seidi, F., Salehi, E., et al. "Efficient CO2-removal using novel mixed-matrix membranes with modified TiO2 nanoparticles", J. Mater. Chem.A, 5, pp. 4011-4025 (2017). https://doi.org/10.1039/C6TA09990D.
37. Prashanth, P.A., Raveendra, R.S., Krishna, R.H., et al. "Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived ff-Al2O3 nanoparticles", J. Asian Ceram. Soc., 3, pp. 345-351 (2015). https://doi.org/10.1016/j.jascer.2015.07.001.
38. Mozaffari, V., Sadeghi, M., Fakhar, A., et al. "Gas separation properties of polyurethane/poly(ether-blockamide) (PU/PEBA) blend membranes", Sep. Purif. Technol., 185, pp. 202-214 (2017).https://doi.org/10.1016/j.seppur.2017.05.028.
39. Liu, S.L., Shao, L., Chua, M.L., et al. "Recent progress in the design of advanced PEO-containing membranes for CO2 removal", Prog. Polym. Sci., 38, pp. 1089- 1120 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.002.
40. Sanders, D.F., Smith, Z.P., Guo, R., et al. "Energy efficient polymeric gas separation membranes for a sustainable future: A review", Polym., 54, pp. 4729- 4761 (2013). https://doi.org/10.1016/j.polymer.2013.05.075.
41. Lin, H., He, Z., Sun, Z., et al. "CO2 selective membranes for hydrogen production and CO2 capture - Part I: Membrane development", J. Membr. Sci., 457, pp. 149-161 (2014). https://doi.org/10.1016/j.memsci.2014.01.020.
42. Sadrzadeh, M., Amirilargani, M., Shahidi, K., et al. "Gas permeation through a synthesized composite PDMS/PES membrane", J. Membr. Sci., 342, pp. 236-250 (2009). https://doi.org/10.1016/j.memsci.2009.06.047.
43. George, G., Bhoria, N., Alhallaq, S., et al. "Polymer membranes for acid gas removal from natural gas", Sep. Purif. Technol., 158, pp. 333-356 (2016). https://doi.org/10.1016/j.seppur.2015.12.033.
44. Li, Y., Li, X., Wu, H., et al. "Anionic surfactantdoped Pebax membrane with optimal free volume characteristics for efficient CO2 separation", J. Membr. Sci., 49, pp. 460-469 (2015).https://doi.org/10.1016/J.MEMSCI.2015.06.046.
45. Liu, Y., Chen, C., Lin, G., et al. "Characterization and molecular simulation of Pebax-1657 based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement", J. Membr. Sci., 582, pp. 358-366 (2019). https://doi.org/10.1016/j.memsci.2019.04.025.
46. Jeyranpour, F., Alahyarizadeh, G., and Minuchehr, A. "The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation - A comparative study", Polym., 88, pp. 9-18 (2016). https://doi.org/10.1016/J.POLYMER.2016.02.018.
47. Golzar, K., Modarress, H., and Amjad-iranagh, S. "Separation of gases by using pristine , composite and nanocomposite polymeric membranes: A molecular dynamics simulation study", J. Membr. Sci, 539, pp. 238-256 (2017). https://doi.org/10.1016/j.memsci.2017.06.010.
48. Tocci, E., Gugliuzza, A., DeLorenzo, L., et al. "Transport properties of a co-poly(amide-12-b-ethylene oxide) membrane: A comparative study between experimental and molecular modelling results", J. Membr. Sci., 323, pp. 316-327 (2008). https://doi.org/10.1016/j.memsci.2008.06.031.
Volume 30, Issue 6
Transactions on Chemistry and Chemical Engineering (C)
November and December 2023
Pages 2043-2055
  • Receive Date: 10 February 2021
  • Revise Date: 25 July 2022
  • Accept Date: 26 December 2022