References:
1. Ilyas, A., Muhammad, N., and Amjad, M. "Effect of zeolite surface modification with ionic liquid [APTMS][Ac] on gas separation performance of mixed matrix membranes", Sep Purif Technol., 205, pp. 176- 183 (2018). https://doi.org/10.1016/j.seppur.2018.05.040.
2. Azizi, N., Mahdavi, HR., Isanejad, M., et al. "Effects of low and high molecular mass PEG incorporation into different types of poly(ether-b-amide) copolymers on the permeation properties of CO2 and CH4", J Polym Res., 24, p. 141 (2017). https:// 10.1007/s10965-017-1297-1.
3. Tu, Z., Liu, P., Zhang, X., et al. "Highly-selective separation of CO2 from N2 or CH4 in task-specific ionic liquid membranes: Facilitated transport and saltingout effect", Sep. Purif. Technol., 254, pp. 1-9 (2021). https://doi.org/10.1016/j.seppur.2020.117621.
4. Fan, Y., Yu, H., Xu, S., et al. "Zn(II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations", J. Memb. Sci., 597, 117775 (2020). https://doi.org/10.1016/j.memsci.2019.117775.
5. Yoon, K.W., Kim, H., Kang, Y.S., et al. "1-Butyl-3- methylimidazolium tetra uoroborate/zinc oxide composite membrane for high CO2 separation performance", Chem Eng J., 320, pp. 50-54 (2017). https://doi.org/10.1016/j.cej.2017.03.026.
6. Kanehashi, S., Aguiar, A., Lu, H.T., et al. "Effects of industrial gas impurities on the performance of mixed matrix membranes", J Membr Sci., 549, pp. 686-692 (2018). https://doi.org/10.1016/j.memsci.2017.10.056.
7. Asghari, M., Mosadegh, M., and RiasatHarami, H. "Supported PEBA-zeolite 13X nano-composite membranes for gas separation: Preparation, characterization and molecular dynamics simulation", Chem Eng Sci, 187, pp. 67-78 (2018). https://doi.org/10.1016/j.ces.2018.04.067.
8. Jiang, Y., Liu, C., Caro, J., et al. "A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance", Microporous Mesoporous Mater, 274, pp. 203-211 (2019). https://doi.org/10.1016/j.micromeso.2018.08.003.
9. Karamouz, F., Maghsoudi, H., and Yegani, R. "Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation", J Nat Gas Sci Eng, 35, pp. 980-985 (2016). https://doi.org/10.1016/j.jngse.2016.09.036.
10. Momeni, M., Kojabad, M.E., Khanmohammadi, S., et al. "Impact of support on the fabrication of poly (ether-b-amide) composite membrane and economic evaluation for natural gas sweetening", J Nat Gas Sci Eng, 62, pp. 236-246 (2019). https://doi.org/10.1016/j.jngse.2018.12.014.
11. Azizi, N., Mohammadi, T., and Behbahani, R.M. "Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4", J Nat Gas Sci Eng, 37, pp. 39-51 (2017). https://doi.org/10.1016/j.jngse.2016.11.038.
12. Ghasemi, E., Omidkhah, M., and Ebadi, A. "Preparation and characterization of novel Ionic liquid/Pebax membranes for efficient CO2/light gases separation", J Ind Eng Chem, 5, pp. 77-89 (2017). http://dx.doi.org/10.1016/j.jiec.2017.02.017.
13. Ghadimi, A., Amirilargani, M., Mohammadi, T., et al. "Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of CO2/H2(syngas application)", J Membr Sci, 458, pp. 14-26 (2014). https://doi.org/10.1016/j.memsci.2014.01.048.
14. Samarasinghe, S.A.S.C., Chuah, C.Y., Yang, Y., et al. "Tailoring CO2/CH4 separation properties of mixedmatrix membranes via combined use of two- and threedimensional metal-organic frameworks", J Membr Sci., 557, pp. 30-37 (2018). https://doi.org/10.1016/j.memsci.2018.04.025.
15. Li, W., Samarasinghe, S.A.S.C., and Bae, T. "Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8", J Ind Eng Chem., 67, pp. 156-163 (2018). https://doi.org/10.1016/j.jiec.2018.06.026.
16. Hwang, S., Seok, W., Jin, S., et al. "Hollow ZIF- 8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation", J Membr Sci., 480, pp. 11-19 (2015). https://doi.org/10.1016/j.memsci.2015.01.038.
17. Zhang, X., Zhang, T., Wang, Y., et al. "Mixedmatrix membranes based on Zn/Ni-ZIF-8-PEBA for high performance CO2 separation", J Membr Sci., 560, pp. 38-46 (2018). https://doi.org/10.1016/j.memsci.2018.05.004.
18. Jomekian, A., Bazooyar, B., Mosayebi, R., et al. "Ionic liquid-modified Pebax® 1657 membrane filled by ZIF- 8 particles for separation of CO2 from CH4, N2 and H2", J Membr Sci., 524, pp. 652-662 (2017). https://doi.org/10.1016/j.memsci.2016.11.065.
19. Yong, Z., Mata, V., and Rodrigues, A.E. "Adsorption of carbon dioxide on basic alumina at high temperatures", J Chem Eng. Data, 45, pp. 1093-1095 (2000). https://doi.org/10.1021/je000075i.
20. Esmaili, J. and Ehsani, M.R. "Study on the effect of preparation parameters of K2CO3/Al2O3 sorbent on CO2 capture capacity at flue gas operating conditions", J Encapsulation Adsorpt Sci, 3, pp. 57-63 (2013). https://doi.org/10.4236/jeas.2013.32007.
21. Matteucci, S.T. "Gas transport properties of reverse selective nanocomposite materials", University of Texas, Austin, United States (2007). http://hdl.handle.net/2152/3631.
22. Azizi, N., Mohammadi, T., and Behbahani, R.M. "Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation", Chem. Eng. Res. Des., 117, pp. 177-189 (2017). https://doi.org/10.1016/j.cherd.2016.10.018.
23. Zhu, H., Yuan, J., Zhao, J., et al. "Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes", Sep Purif Technol., pp. 78-86 (2019). https://doi.org/10.1016/j.seppur.2018.02.020.
24. Song, C., Li, R., Fan, Z., et al. "CO2/N2 separation performance of Pebax /MIL-101 and Pebax /NH2 - MIL- 101 mixed matrix membranes and intensi fication via sub-ambient operation", Sep. Purif. Technol., 238, 116500 (2020). https://doi.org/10.1016/j.seppur.2020.116500.
25. Azizi, N., Mohammadi, T., and Behbahani, R.M. "Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance", J Energy Chem., 26, pp. 454-465 (2017). https://doi.org/10.1016/j.jechem.2016.11.018.
26. Asghari, M., Sheikh, M., and Dehghani, M. "Comparison of ZnO nanofillers of different shapes on physical, thermal and gas transport properties of PEBA membrane: experimental and molecular simulation", J Chem Technol Biotechnol., 93, pp. 2602-2616 (2018). https://doi.org/10.1002/jctb.5614.
27. Ghadimi, A., Mohammadi, T., and Kasiri, N. "Gas permeation, sorption and diffusion through PEBA/SiO2 nanocomposite membranes (chemical surface modification of nanopar ticles)", Int J Hydrogen Energy, 40, pp. 9723-9732 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.013.
28. Ghadimi, A., Mohammadi, T., and Kasiri, N. "A novel chemical surface modification for the fabrication of PEBA/SiO2 nanocomposite membranes to separate CO2 from syngas and natural gas streams", Ind. En. Chem. Res., 53, pp. 17476-17486 (2014). https://doi.org/10.1021/ie503216p.
29. Mahdavi, H.R., Azizi, N., and Mohammadi, T. "Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/ -Al2O3 membrane for CO2/CH4 separation using response surface methodology", J. Polym. Res., 24(67) (2017). https://doi.org/10.1007/s10965-017-1228-1.
30. Chung, T.S., Jiang, L.Y., Li, Y., et al. "Mixed Matrix Membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, pp. 483-507 (2007). https://doi.org/10.1016/J.PROGPOLYMSCI.
2007.01.008.
31. Amini, Z. and Asghari, M. "Preparation and characterization of ultra-thin poly ether block amide/nanoclay nanocomposite membrane for gas separation", Appl. Clay Sci., 166, pp. 230-241 (2018). https://doi.org/10.1016/j.clay.2018.09.025.
32. Zhuang, G.L., Wey, M.Y., and Tseng, H.H. "The density and crystallinity properties of PPO-silica mixedmatrix membranes produced via the in situ sol-gel method for H2/CO2 separation. II: Effect of thermal annealing treatment", Chem Eng Res Des, 104, pp. 319-32 (2015).
33. Laghaei, M., Sadeghi, M., Ghalei, B., et al. "The role of compatibility between polymeric matrix and silane coupling agents on the performance of mixed matrix membranes: polyethersulfone/MCM-41", J. Membr. Sci., 513, pp. 20-32 (2016).
34. Kojabad, M.E., Babaluo, A., Tavakoli, A., et al. "Comparison of acidic and basic ionic liquids effects on dispersion of alumina particles in Pebax composite membranes for CO2/N2 separation: Experimental Study and molecular simulation", J. Environ. Chemical. Engin., 9, 118494 (2021). https://doi.org/10.1016/j.seppur.2021.118494.
35. Kayser, M.J., Reinholdt, M.X., and Kaliaguine, S. "Amine grafted silica/SPEEK nanocomposites as proton exchange membranes", J. Phys. Chem., B, 114, pp. 8387-95 (2010).
36. Shamsabadi, A.A., Seidi, F., Salehi, E., et al. "Efficient CO2-removal using novel mixed-matrix membranes with modified TiO2 nanoparticles", J. Mater. Chem.A, 5, pp. 4011-4025 (2017). https://doi.org/10.1039/C6TA09990D.
37. Prashanth, P.A., Raveendra, R.S., Krishna, R.H., et al. "Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived ff-Al2O3 nanoparticles", J. Asian Ceram. Soc., 3, pp. 345-351 (2015). https://doi.org/10.1016/j.jascer.2015.07.001.
38. Mozaffari, V., Sadeghi, M., Fakhar, A., et al. "Gas separation properties of polyurethane/poly(ether-blockamide) (PU/PEBA) blend membranes", Sep. Purif. Technol., 185, pp. 202-214 (2017).https://doi.org/10.1016/j.seppur.2017.05.028.
39. Liu, S.L., Shao, L., Chua, M.L., et al. "Recent progress in the design of advanced PEO-containing membranes for CO2 removal", Prog. Polym. Sci., 38, pp. 1089- 1120 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.002.
40. Sanders, D.F., Smith, Z.P., Guo, R., et al. "Energy efficient polymeric gas separation membranes for a sustainable future: A review", Polym., 54, pp. 4729- 4761 (2013). https://doi.org/10.1016/j.polymer.2013.05.075.
41. Lin, H., He, Z., Sun, Z., et al. "CO2 selective membranes for hydrogen production and CO2 capture - Part I: Membrane development", J. Membr. Sci., 457, pp. 149-161 (2014). https://doi.org/10.1016/j.memsci.2014.01.020.
42. Sadrzadeh, M., Amirilargani, M., Shahidi, K., et al. "Gas permeation through a synthesized composite PDMS/PES membrane", J. Membr. Sci., 342, pp. 236-250 (2009). https://doi.org/10.1016/j.memsci.2009.06.047.
43. George, G., Bhoria, N., Alhallaq, S., et al. "Polymer membranes for acid gas removal from natural gas", Sep. Purif. Technol., 158, pp. 333-356 (2016). https://doi.org/10.1016/j.seppur.2015.12.033.
44. Li, Y., Li, X., Wu, H., et al. "Anionic surfactantdoped Pebax membrane with optimal free volume characteristics for efficient CO2 separation", J. Membr. Sci., 49, pp. 460-469 (2015).https://doi.org/10.1016/J.MEMSCI.2015.06.046.
45. Liu, Y., Chen, C., Lin, G., et al. "Characterization and molecular simulation of Pebax-1657 based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement", J. Membr. Sci., 582, pp. 358-366 (2019). https://doi.org/10.1016/j.memsci.2019.04.025.
46. Jeyranpour, F., Alahyarizadeh, G., and Minuchehr, A. "The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation - A comparative study", Polym., 88, pp. 9-18 (2016). https://doi.org/10.1016/J.POLYMER.2016.02.018.
47. Golzar, K., Modarress, H., and Amjad-iranagh, S. "Separation of gases by using pristine , composite and nanocomposite polymeric membranes: A molecular dynamics simulation study", J. Membr. Sci, 539, pp. 238-256 (2017). https://doi.org/10.1016/j.memsci.2017.06.010.
48. Tocci, E., Gugliuzza, A., DeLorenzo, L., et al. "Transport properties of a co-poly(amide-12-b-ethylene oxide) membrane: A comparative study between experimental and molecular modelling results", J. Membr. Sci., 323, pp. 316-327 (2008). https://doi.org/10.1016/j.memsci.2008.06.031.