A new model for predicting fretting fatigue crack initiation life based on effective slip amplitude

Document Type : Article

Authors

Department of Aerospace Engineering, Sharif University of Technology, 11365-11155, Tehran, Iran

Abstract

In this study, a new model has been developed for fretting fatigue crack initiation life prediction based on the slip amplitude as a macroscopic feature of the contact interfaces. The main difference between the presented model and many other fretting fatigue life prediction models is the focus on the fretting specific characteristics. In this model, a damage parameter is combined with a damage severity factor to obtain a new fretting fatigue crack initiation life prediction parameter. To investigate the accuracy of this new parameter, a series of fretting fatigue tests have been conducted. Also, crack initiation life data from the literature were added to enhance parameter accuracy investigation. It is shown that the effective slip amplitude is an unbiased geometric-independent parameter in fretting fatigue crack initiation life prediction. Also, comparing prediction results from the effective slip amplitude with those of Smith-Watson-Topper and Ruiz parameters showed that the new parameter can outperform available fretting fatigue life prediction parameters.

Keywords


References:
1. ASTM E2789-10, Standard Guide for Fretting Fatigue Testing, ASTM International (2010).
2. Smith, R.N., Watson, P., and Topper, TH. "A stressstrain parameter for the fatigue of metals", J. Mater., 5(4), pp. 767-78 (1970).
3. Fatemi, A. and Socie, D.F. "A critical plane approach to multiaxial fatigue damage including out of phase loading", Fatigue Frac. Eng. Mater. Struc., 11(3), pp. 149-165 (1988).
4. Nowell, D. and Nowell, P.W. "A machine learning approach to the prediction of fretting fatigue life", Tribol. Int., 141, 105913 (2020).
5. Sunde, S.L., Berto, F., and Haugen, B. "Predicting fretting fatigue in engineering design", Int. J. Fatigue, 117, pp. 314-326 (2018).
6. Ruiz, C., Boddington, P.H., and Chen, K.C. "An investigation of fatigue and fretting in a dovetail joint", Exp. Mech., 24(3), pp. 208-217 (1984).
7. Vidner, J. and Leidich, E. "Enhanced Ruiz criterion for the evaluation of crack initiation in contact subjected to fretting fatigue", Int. J. Fatigue, 29(9-11), pp. 2040-2049 (2007).
8. Hojjati-Talemi, R. and Wahab, M.A. "Fretting fatigue crack initiation lifetime predictor tool: using damage mechanics approac", Tribol. Int., 60, pp. 176-186 (2013).
9. Majzoobi, G.H. and Minaii, K. "Fretting fatigue life estimation of Al 7075-T6 using plain fatigue test", Tribol. Trans., 57(4), pp. 613-621 (2014).
10. Pinto, A.L., Talemi, R., and Araujo, J.A. "Fretting fatigue total life assessment including wear and a varying critical distance", Int. J. Fatigue, 156, 106589 (2022).
11. Lin, X. and Xu, Y. "An equivalent damage model to fretting fatigue initiation life considering wear", Int. J. Fatigue, 2, 107048 (2022).
12. Rangel, D., Erena, D., Vazquez, J., et al. "Prediction of initiation and total life in fretting fatigue considering kinked cracks", Theor. Appl. Frac. Mech., 119, 103345 (2022).
13. Pokkalla, D.K., Biswas, R., Poh, L.H., et al. "Fretting fatigue stress analysis in heterogeneous material using direct numerical simulations in solid mechanics", Tribol. Int., 109, pp. 124-132 (2017).
14. Deng, Q., Bhatti, N.A., Yin, X., et al. "The effect of a critical micro-void defect on fretting fatigue crack initiation in heterogeneous material using a multiscale approach", Tribol. Int., 141, 105909 (2020).
15. Huo, J., Yang, B., Ren, R., et al. "Research on fretting fatigue life estimation model considering plastic effect", J. Braz. Soc. Mech. Sci. Eng., 44(4), pp. 1-8 (2022).
16. Glodek, G. and Talemi, R. "An applied approach for estimating fretting fatigue lifetime of dovetail joints using coupon scale test data", Theor. Appl. Frac. Mech., 16, 103455 (2022).
17. Shen, F., Ke, L.L. and Zhou, K. "A debris layer evolution-based model for predicting both fretting wear and fretting fatigue lifetime", Int. J. Fatigue, 142, 105928 (2021).
18. Bhatti, N.A. and Wahab, M.A. "Fretting fatigue crack nucleation: a review", Tribol. Int., 121, pp. 121-138 (2018).
19. Ding, J., Houghton, D., Williams, E.J., et al. "Simple parameters to predict effect of surface damage on fretting fatigue", Int. J. Fatigue, 33(3), pp. 332-342 (2011).
20. Vingsbo, O. and Soderberg, S. "On fretting maps", Wear, 126(2), pp. 131-147 (1988).
21. Walker, K. "The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum", ASTM Int., pp. 1-14 (1970).
22. Lykins, C.D., Mall, S., and Jain, V. "An evaluation of parameters for predicting fretting fatigue crack initiation", Int. J. Fatigue, 22(8), pp. 703-716 (2000).
23. Yue, T. and Wahab, M.A. "Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes", Tribol. Int., 107, pp. 274- 282 (2017).
24. ASTM G115-10 "Standard guide for measuring and reporting friction coefficients", ASTM Int. (2010).
25. Lykins, C.D. "An investigation of fretting fatigue crack initiation behavior of the titanium alloy Ti-6Al- 4V", PhD Thesis, University of Dayton, Dayton, USA (1999).
26. Bhatti, N.A., Pereira, K.D., and Wahab, M.A. "Effect of stress gradient and quadrant averaging on fretting fatigue crack initiation angle and life", Tribol. Int., 131, pp. 212-221 (2019).
27. Ping, X., Chen, M., and Ying, S. "Effects of  hermomechanical properties on interface edge singular thermal stresses of quad at package solder joints", Sens. Lett., 11(6-7), pp. 1326-1331 (2013).
28. Xue-cheng, P.I., Wei-Xing, W.U., Meng-Cheng, C.H., et al. "Research on 3-d singular stress fields near contact boundaries of riveted assemblies", Eng. Mech., 34(6), pp. 226-235 (2017).
29. Ciavarella, M., Hills, D.A., and Monno, G. "The influence of rounded edges on indentation by a  at punch", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 212(4), pp. 319-327 (1998).
30. Wang, X.X., Ping, X.C., Zeng, X., et al. "Fretting fatigue experiment and simulation ofWC-12Co coating taking into account the wear effects", Surf. Coat. Tech., 441, 128555 (2022).