An overall grasp evaluation function to evaluate and optimize prosthetic hands

Document Type : Article


School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran


In this study, we create an evolution function that assesses prosthetic hands in terms of their ability to grasp various objects like a human hand. It is required to evaluate the reachable workspace of prosthetic hands and grasp ability to assess it completely. The first one can be done by using forward kinematics. The Volume of the Grasp Wrench space, one of the grasp qualities indexes, is used to measure the second one. Randomization and grasp taxonomy are used to generalize the grasp quality to indicate the prosthetic hand functionality. Afterward, the created evaluation function is used to specify the importance of each finger and DOF. the results show that the most significant finger is the Thumb. The most crucial DOFs are the abduction movement of the Thumb's CMC joint and the Index's MCP joint. Finally, optimized hand configuration is created, considering limitations which are a number of actuators and stationery DOFs. Optimization has two steps. In the first step, the stationary joints and the joints that should be actuated independently from each other are chosen. In the second step, the remaining DOFs are specified to be coupled with which actuator using the Taguchi method.


1. Ma'touq, J., Hu, T., and Haddadin, S. "Sub-millimetre accurate human hand kinematics: from surface to skeleton", Computer Methods in Biomechanics and Biomedical Engineering, 21(2), pp. 113-128 (Jan. 2018). DOI: 10.1080/10255842.2018.1425996.
2. "".
3. Kaye, R. and Konz, S. "Volume and surface area of the hand", Proceedings of the Human Factors Society Annual Meeting, 30(4), pp. 382-384 (Sep. 1986). DOI: 10.1177/154193128603000417.
4. Belter, J.T., Segil, J.L., Dollar, A.M., et al. "Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review", Journal of Rehabilitation Research and Development, 50(5), pp. 599-618 (2013). DOI: 10.1682/JRRD.2011.10.0188.
5. Taniguchi, H., Takemoto, N., Yakami, R., et al. "Realistic and highly functional pediatric externally powered prosthetic hand using pneumatic soft actuators", Journal of Robotics and Mechatronics, 32(5), pp. 1034-1043 (2020). DOI: 10.20965/jrm.2020.p1034.
6. Nemoto, Y., Ogawa, K., and Yoshikawa, M. "F3Hand: A five-fingered prosthetic hand driven with curved pneumatic artificial muscles", in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018-July, pp. 1668-1671 (Jul. 2018). DOI: 10.1109/EMBC.2018.8512692.
7. Controzzi, M., Clemente, F., Barone, D., et al. "The SSSA-MyHand: a dexterous lightweight myoelectric hand prosthesis", IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(5), pp. 459- 468 (May 2017). DOI: 10.1109/TNSRE.2016.2578980.
8. Laffranchi, M., Boccardo, N., Traverso, S., et al. "The Hannes hand prosthesis replicates the key biological properties of the human hand", Science Robotics, 5(46), pp. 1-16 (2020). DOI: 10.1126/SCIROBOTICS.ABB0467.
9. Nikafrooz, N. and Leonessa, A. "A single-actuated, cable-driven, and self-contained robotic hand designed for adaptive grasps", Robotics, 10(4), p. 109 (2021).DOI: 10.3390/robotics10040109.
10. Fajardo, J., Ferman, V., Cardona, D., et al. "Galileo hand: An anthropomorphic and affordable upper-Limb prosthesis", IEEE Access, 8, pp. 81365-81377 (2020). DOI: 10.1109/ACCESS.2020.2990881.
11. Leonardis, D. and Frisoli, A. "CORA hand: a 3D printed robotic hand designed for robustness and compliance", Meccanica, 55(8), pp. 1623-1638 (2020). DOI: 10.1007/s11012-020-01188-0.
12. Owen, M., Au, C., and Fowke, A. "Development of a dexterous prosthetic hand", Journal of Computing and Information Science in Engineering, 18(1) (Mar. 2018). DOI: 10.1115/1.4038291.
13. Avila-Hernandez, P.E. and Cuenca-Jimenez, F. "Design and synthesis of a 2 DOF 9-bar spatial mechanism for a prosthetic thumb", Mechanism and Machine Theory, 121, pp. 697-717 (2018). DOI: 10.1016/j.mechmachtheory.2017.12.001.
14. Liow, L., Clark, A.B., and Rojas, N. "OLYMPIC: A modular, tendon-driven prosthetic hand with novel finger and wrist coupling mechanisms", IEEE Robotics and Automation Letters, 5(2), pp. 299-306 (Apr. 2020). DOI: 10.1109/LRA.2019.2956636.
15. Hundhausen, F., Starke, J., and Asfour, T. "A soft humanoid hand with in-finger visual perception", IEEE International Conference on Intelligent Robots and Systems, pp. 8722-8728 (2020). DOI: 10.1109/IROS45743.2020.9341080.
16. Estay, D., Basoalto, A., Ardila, J., et al. "Development and implementation of an anthropomorphic underactuated prosthesis with adaptive grip", Machines, 9(10), pp. 1-21 (2021). DOI: 10.3390/machines9100209.
17. Liu, H., Xu, K., Siciliano, B., et al. "The MERO hand: A mechanically robust anthropomorphic prosthetic hand using novel compliant rolling contact joint", IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2019-July, pp. 126- 132 (2019). DOI: 10.1109/AIM.2019.8868520.
18. Smit, G., Plettenburg, D.H., and van der Helm, F.C.T. "The lightweight delft cylinder hand: first multiarticulating hand that meets the basic user requirements", IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(3), pp. 431-440 (May 2015). DOI: 10.1109/TNSRE.2014.2342158.
19. Belter, J.T., Reynolds, B.C., and Dollar, A.M. "Grasp and force based taxonomy of split-hook prosthetic terminal devices", 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, pp. 6613-6618 (2014). DOI: 10.1109/EMBC.2014.6945144.
20. Mehrkish, A. and Janabi-Sharifi, F. "A comprehensive grasp taxonomy of continuum robots", Robotics and Autonomous Systems, 145, p. 103860 (2021). DOI: 10.1016/j.robot.2021.103860.
21. Cutkosky, M.R. "On grasp choice, grasp models, and the design of hands for manufacturing tasks", IEEE Transactions on Robotics and Automation, 5(3), pp. 269-279 (1989). DOI: 10.1109/70.34763.
22. Feix, T., Romero, J., Schmiedmayer, H.B., et al. "The grasp taxonomy of human grasp types", IEEE Transactions on Human-Machine Systems, 46(1), pp. 66-77 (Feb. 2015). DOI: 10.1109/THMS.2015.2470657.
23. Kyota, F. and Saito, S. "Fast grasp synthesis for various shaped objects", Computer Graphics Forum, 31(2), pp. 765-774 (2012). DOI: 10.1111/j.1467- 8659.2012.03035.x.
24. Liu, Y., Jiang, L., Yang, D., et al. "Analysis on the joint independence of hand and wrist", IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2016-Septe, pp. 31- 37 (2016). DOI: 10.1109/AIM.2016.7576739.
25. Zarzoura, M., del Moral, P., Awad, M.I., et al. "Investigation into reducing anthropomorphic hand
degrees of freedom while maintaining human hand grasping functions", Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(2), pp. 279-292 (2019). DOI: 10.1177/0954411918819114.
26. Feix, T., Romero, J., Ek, C.H., et al. "A metric for comparing the anthropomorphic motion capability of artificial hands", IEEE Transactions on Robotics, 29(1), pp. 82-93 (2012). DOI: 10.1109/TRO.2012.2217675.
27. Tavakoli, M., Enes, B., Santos, J., et al. "Underactuated anthropomorphic hands: Actuation strategies for a better functionality", Robotics and Autonomous Systems, 74, pp. 267-282 (2015). DOI: 10.1016/j.robot.2015.08.011.
28. Mehrkish, A. and Janabi-Sharifi, F. "Grasp synthesis of continuum robots", Mechanism and Machine Theory, 168, p. 104575 (Feb. 2022). DOI: 10.1016/j.mechmachtheory.2021.104575.
29. Lippert, L., Clinical Kinesiology and Anatomy, FA Davis (2006).
30. Buchholz, B., Armstrong, T.J., and Goldstein, S.A. "Anthropometric data for describing the kinematics of the human hand", Ergonomics, 35(3), pp. 261-73 (Mar. 1992). DOI: 10.1080/00140139208967812.
31. Pe~na-Pitarch, E., Falguera, N.T., and Yang, J. "Virtual human hand: model and kinematics", Computer Methods in Biomechanics and Biomedical Engineering, 17(5), pp. 568-579, Apr. (2014). DOI:10.1080/10255842.2012.702864.
32. Greiner, T.M. "Hand anthropometry of U.S. Army personnel", 1991. [Online]. Available: 0A metadataPrefix=html&identifier=ADA244533.
33. Gracia-Ibanez, V., Vergara, M., Sancho-Bru, J.L., et al. "Functional range of motion of the hand joints in activities of the International classification of functioning, disability and health", Journal of Hand Therapy, 30(3), pp. 337-347 (Jul. 2017). DOI: 10.1016/j.jht.2016.08.001.
34. Coupier, J., Hamoudi, S., Telese-Izzi, S., et al. "A novel method for in-vivo evaluation of finger kinematics including definition of healthy motion patterns", Clinical Biomechanics, 31, pp. 47-58 (2016). DOI:10.1016/j.clinbiomech.2015.10.002.
35. Castelli, G., Ottaviano, E., and Ceccarelli, M. "A fairly general algorithm to evaluate workspace characteristics of serial and parallel manipulators", Mechanics Based Design of Structures and Machines, 36(1), pp. 14-33 (Feb. 2008). DOI: 10.1080/15397730701729478.
36. Roa, M.A. and Suarez, R. "Grasp quality measures: review and performance", Autonomous Robots, 38(1), pp. 65-88 (Jan. 2015). DOI: 10.1007/s10514-014-9402- 3.
37. Miller, A.T. and Allen, P.K. "Examples of 3D grasp quality computations", in Proceedings 1999 IEEE International Conference on Robotics and Automation(Cat. No.99CH36288C), 2, no. May, pp. 1240-1246 (1999). DOI: 10.1109/ROBOT.1999.772531.
38. Tukey, J.W. "Comparing individual means in the analysis of variance", Biometrics, 5(2), p. 99 (Jun. 1949). DOI: 10.2307/3001913.
39. Homam, R. and Sayyaadi, H. "Design and optimization of a cybernetics hand", MSc thesis, School of Mechanical Engineering, Sharif University of Technology (2022).
40. Tavakoli, M., Enes, B., Marques, L., et al. "Actuation configurations of bionic hands for a better anthropomorphism index", Journal of Mechanisms and Robotics, 8(4) (Aug. 2016). DOI: 10.1115/1.4032405.
41. Andres-Esperanza, J., Iserte-Vilar, J.L., Llop-Harillo, I., et al. "Affordable 3D-printed tendon prosthetic hands: Expectations and benchmarking questioned", Engineering Science and Technology, an International Journal, 31, p. 101053 (2022). DOI: 10.1016/j.jestch.2021.08.010.
42. Han, L., Trinkle, J.C., and Li, Z.X. "Grasp analysis as linear matrix inequality problems", IEEE Transactions on Robotics and Automation, 16(6), pp. 663-674 (2000). DOI: 10.1109/70.897778.
43. Kim, J., Iwamoto, K., Kuffner, J.J., et al. "Physically based grasp quality evaluation under pose uncertainty", IEEE Transactions on Robotics, 29(6), pp. 1424-1439 (2013). DOI: 10.1109/TRO.2013.2273846.