Numerical and experimental investigation of the in-phase and out-phase plasma actuation effects on the wake flow for Re = 1000

Document Type : Article


Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, P.O. Box 16589-53571, Iran


The aim is to characterize the role of symmetry pattern on the flow control induced by dielectric barrier discharge plasma actuators. Two DBD actuators are employed for in-phase excitation with duty cycle 50% leading to symmetric wake pattern and out-phase excitation for two pulsing frequencies St=0.2 and St=1 at Re=1000 which forms quasi-symmetric and asymmetric flow structures respectively. The modes deduced from POD and DMD methods represent the competition between symmetric (S) and asymmetric mode (K) in all cases. The harmonic in-phase plasma actuation with 50% duty cycle is the most effective flow control method with lowest power consumption. The harmonic out-phase excitation is not much effective; however adjustment of the actuator position can form the symmetric pattern with minimum power consumption. The superharmonic out-phase plasma actuation reduces the wake region however is not effective in lift reduction significantly and consumes high amount of energy. This indicates that phase difference and plasma location influence on the size and symmetry of the vortical structure. Then, based on the symmetry properties of the designed wake pattern created by frequency and phase difference of the plasma actuator, the effective active flow control can be performed. The numerical results are validated with experiments.


1. Artana, G., Sosa, R., Moreau, E., and Touchard, G. "Control of the near-wake flow around a circular cylinder with electrohydrodynamic actuators", Exp. Fluids, 35(6), pp. 580-588 (2003). DOI: 10.1007/s00348-003- 0704-z.
2. Hyun, K.T. and Chun, C.H. "The wake flow control behind a circular cylinder using ion wind", Exp. Fluids, 35(6), pp. 541-552 (2003). DOI: 10.1007/s00348-003- 0668-z.
3. Post, M.L. and Corke, T.C. "Separation control on high angle of attack airfoil using plasma actuators", AIAA J., 42(11), pp. 1-11 (2004). DOI: 10.2514/1.2929.
4. Xu, X., Plasma Actuation for Boundary Layer Separation Control in Engine Ducts, Polytechnique de Montreal (2011).
5. West IV, T.K. and Hosder, S. "Numerical investigation of plasma actuator configurations for flow separation control at multiple angles of attack", Int. J. Flow Control, 5(1), pp. 25-46 (2013). DOI: 10.1260/1756- 8250.5.1.25.
6. Chen, J.L. and Liao, Y.H. "Effects of an annular plasma actuator on a co-flow jet downstream of a bluff- body", Appl. Therm. Eng., 192, pp. 1-10 (2021). DOI: 10.1016/j.applthermaleng.2021.116975.
7. Sato, M., Asada, K., Nonomura, T., et al. "Mechanisms for turbulent separation control using plasma actuator at Reynolds number of 1.6 106", Phys. Fluids, 31(9) (2019). DOI: 10.1063/1.5110451.
8. Huang, G., Dai, Y., Yang, C., et al. "Effect of dielectric barrier discharge plasma actuator on the dynamic moment behavior of pitching airfoil at low Reynolds number", Phys. Fluids, 33(4) (2021). DOI:10.1063/5.0048235.
9. Vaddi, R.S., Sota, C., Mamishev, A., et al., Active Flow Control of NACA 0012 airfoil using Sawtooth Direct Current Augmented Dielectric Barrier Discharge Plasma Actuator, Prepr. ArXiv (2020).
10. Guoqiang, L., Weiguo, Z., Yubiao, J., et al. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator", Energy, 185 (2019). DOI: 10.1016/
11. Guoqiang, L. and Shihe, Y. "Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator", Energy, 212 (2020). DOI: 10.1016/
12. Moreau, E., Debien, A., Breux, J.M., and Benard, N. "Control of a turbulent  flow separated at mid-chord along an airfoil with DBD plasma actuators", J. Electrostat., 83, pp. 1-8 (2016). DOI: 10.1016/j.elstat.2016.08.005.
13. Dedrick, J., Im, S., Cappelli, M.A., et al. "Surface discharge plasma actuator driven by a pulsed 13.56 MHz-5 kHz voltage waveform", J. Phys. D. Appl. Phys., 46(40), pp. 1-13 (2013). DOI: 10.1088/0022-3727/46/40/405201.
14. Choi, H., Jeon, W.P., and Kim, J. "Control of flow over a bluff body", Annual Review of Fluid Mechanics, 40, pp. 113-139 (2008). DOI: 10.1146/annurev.fluid.39.050905.110149.
15. Nati, G., Kotsonis, M., Ghaemi, S., et al. "Control of vortex shedding from a blunt trailing edge using plasma actuators", Exp. Therm. Fluid Sci., 46, pp. 199-210 (2013). DOI: 10.1016/j.expthermusci.2012.12.012.
16. Brauner, T., Laizet, S., Benard, N., et al. "Modelling of dielectric barrier discharge plasma actuators for direct numerical simulations" , pp. 1-17 (2016). DOI: 10.2514/6.2016-3774.
17. D'Adamo, J., Sosa, R., and Artana, G. "Active control of a backward facing step flow with plasma actuators", J. Fluids Eng. Trans. ASME, 136(12), pp. 1-37 (2014). DOI: 10.1115/1.4027598.
18. Sosa, R., D'Adamo, J., and Artana, G. "Circular cylinder drag reduction by three-electrode plasma actuators", in Journal of Physics: Conference Series, 166, pp. 1-14 (2009). DOI: 10.1088/1742- 6596/166/1/012015.
19. Rodrigues, F., Mushyam, A., Pascoa, J., et al. "A new plasma actuator configuration for improved efficiency: The stair-shaped dielectric barrier discharge actuator", J. Phys. D. Appl. Phys., 52(38), pp. 1-22 (2019). DOI: 10.1088/1361-6463/ab2584.
20. Mohammad-Reza Pendar, J.C.P. "Numerical investigation of plasma actuator effects on flow control over a three-dimensional airfoil with a sinusoidal leading edge", J. Fluids Eng. Trans. ASME Fluids Eng., 144(8), pp. 1-17 (2022). DOI:
21. Zhang, X. and Zong, H. "Vortex shedding frequency scaling of coherent structures induced by a plasma actuator", AIAA J., 60(2), pp. 1067-1076 (2022).DOI: 10.2514/1.J060903.
22. Emori, K., Kaneko, Y., Nishida, N. "Influence of main flow on vortex structure generated by burst mode actuation of DBD plasma actuator", AIAA J., 70, pp. 115-129 (2022). DOI: 2595.
23. Nabatian, N. and Mureithi, N.W. "Bifurcation and stability analysis with the role of normal form symmetries on the harmonic streamwise forced oscillation of the cylinder wake", Eur. J. Mech. B/Fluids, 70 (2018). DOI: 10.1016/j.euromech u.2018.02.003.
24. Nabatian, N. and Mureithi, N.W. "Lock-on vortex shedding patterns and bifurcation analysis of the forced streamwise oscillation of the cylinder wake", Int. J. Bifurc. Chaos, 25(9) (2015). DOI: 10.1142/S0218127415300220.
25. Nabatian N. and Mureithi, N.W., Bifurcation Analysis and the Role of Normal form Symmetries on the Harmonic Forced Inline Oscillation of the Cylinder Wake, in American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, 4 (2016). DOI: 10.1115/PVP2016-63334.
26. Ergin, F.G., Watz, B.B., Erglis, K., et al. "Modal analysis of magnetic microconvection", Magnetohydrodynamics, 50(4), pp. 339-352 (2014). DOI: 10.22364/mhd.50.4.1.
27. Xavier, P., Vandel, A., Godard, G., et al. "Simultaneous high-speed OH-PLIF and PIV measurements to study the flame dynamics in an acoustically self excited trapped vortex combustor", 17th Int. Symp. Appl. Laser Tech. to Fluid Mech., 7, pp. 7-10 (2014).
28. Klein, T.R., Macroscopic Computational Model of Dielectric Barrier Discharge Plasma Actuators, Air Force Institute of Technology (2006).