References:
1. Choi, S.U.S. "Enhancing thermal conductivity of fluids with nanoparticles developments and application of non-Newtonian flows", ASME J. Heat Transfer, 66, pp. 99-105 (1997).
2. Forchheimer, P., "Wasserbewegungduch bodenzeitschrift ver ding", 45, pp. 1782-1788 (1901).
3. Muskat, M., The Flow of Homogenous Fluids Through Porous Media, MI: Edwards (1995).
4. Seddeek, M.A. "Influence of viscous dissipation and thermophoresis on Darcy-Forchheimer mixed convection fluid in a saturated porous media", J. Colloid. Interface Sci., 293, pp. 137-142 (2006).
5. Sajid, T., Sagheer, M., Hussain, S., et al. "Darcy- orchheimer flow of Maxwell nanofluid with nonlinear thermal radiation and activation energy", AIP Adv., 8, (2018). https://doi.org/10.1063/1.5019218.
6. Sheikholeslami, M. and Ebrahimpour, Z. "Nanofluid performance in a solar LFR system involving turbulator applying numerical simulation", Adv. Powder Technol., 33(8) (2022). https://doi.org/10.1016/j.apt.2022.103669.
7. Sheikholeslami, M."Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles", J. Energy Storage, 52, (2022). https://doi.org/10.1016/j.est.2022.104954.
8. Sheikholeslami, M. "Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid", Sol. Energy Mater. Sol. Cells, 243, (2022). https://doi.org/10.1016/j.solmat.2022.111786.
9. Saif, R.S., Hayat, T., Ellahi, R., et al. "Darcy-Forchheimer flow of nanofluid due to a curved stretching surface", International Journal of Numerical Methods, 29, pp. 2-20 (2019).
10. Nasir, S., Shah, Z., Islam, S., et al. "Darcy- Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet", AIP Adv. , 9 (2019). https://doi.org/10.1063/1.5083972.
11. Khan, A., Shah, Z., Islam, S., et al. "Darcy-Forchheimer flow of MHD CNTs nanofluid radiative thermal behavior and convective non-uniform heat source/sink in the rotating frame with microstructure and inertial characteristics", AIP Adv., 8, (2018). https://doi.org/10.1063/1.5066223.
12. Ganesh, N.V., Hakeem, A.K.A., and Ganga, B. "Darcy-Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipation effects", Ain Shams Eng. J., 9, pp. 939-951 (2018).
13. Hayat, T., Haider, F., Muhammad, T., et al. "Numerical study for Darcy-Forchheimer flow of nanofluid due to an exponentially stretching curved surface", Results Phys., 8, pp. 764-771 (2018).
14. Sadiq, M.A. and Hayat, T. "Darcy-Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet", Results Phys., 6, pp. 884-890 (2016).
15. Muhammad, T., Alsaedi, A., Shehzad, S.A., et al. "A revised model for Darcy-Forchheimer flow of Maxwell nanofluid subject to convective boundary condition", Chinese J. Phys., 55, pp. 963-976 (2017).
16. Hayat, T., Aziz, A., Muhammad, T., et al. "Darcy-Forchheimer three-dimensional flow of nanofluid over a convectively nonlinear stretching surface", Commun. Theor. Phys., 68 (2017). https://doi.org/10.1088/0253-6102/68/3/387.
17. Zakaullah, M., Capinnao, S.S., and Baleanu, D. "A numerical simulation for Darcy-Forchheimer flow of nanofluid by a rotating disk with partial slip effects", Front. Phys., 7 (2020). https://doi.org/10.3389/fphy.2019.00219.
18. Turk, O. and Tezer-Sezgin, M. "FEM solution to natural convection flow of a micropolar nanofluid in the presence of a magnetic field", Meccanica, 52, pp. 889-901 (2017).
19. Shafiq, A., Rasool, G., and Khalique, C.M. "Significance of thermal slip and convective boundary conditions in three dimensional rotating Darcy-Forchheimer nanofluid flow", Symmetry, 12 (2020). http://dx.doi.org/10.3390/sym12050741.
20. Saif, R.S., Hayat, T., Ellahi, R., et al. "Darcy- Forchheimer flow of nanofluid due to a curved stretching surface", Int. J. Numer. Methods Heat Fluid Flow, 29, pp. 2-20 (2019).
21. Nasir, S., Shah, Z., Islam, S., et al. "Darcy- Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet", AIP Adv., 9, (2019). https://doi.org/10.1063/1.5083972.
22. Rasool, G., Zhang, T., Chamka, A.J., et al. "Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over nonlinearly stretching surface", Entropy, 22, (2020). https://doi.org/10.3390/e22010018.
23. Shahid, A., Zhou, Z., Hassan, M., et al. "Computational study of magnetized blood flow in the presence of gyrotactic microorganisms propelled through a permeable capillary in a stretching motion", Int. J. Multiscale Comput. Eng. , 16, pp. 409-426 (2018).
24. Waqas, H., Khan, S.U., Imran, M., et al. "Thermally developed Falkner-Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno's nanofluid model", Phys. Scr., 94, (2019). https://doi.org/10.1088/1402-4896/ab2ddc.
25. Sohail, M. and Naz, R. "On the onset of entropy generation for a nanofluid with thermal radiation and gyrotactic microorganisms through three-dimensional flows", Phys. Scr., 95 (2020).https://doi.org/10.1088/1402-4896/ab3c3f.
26. Sheikholeslami, M. and Ebrahimpour, Z. "Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape", Int. J. Therm. Sci., 176 (2022). https://doi.org/10.1016/j.ijthermalsci.2022.107505.
27. Sheikholeslami, M., Said, Z., and Jafaryar, M. "Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid", Renew. Energy, 188, pp. 922-932 (2022).
28. Sheikholeslami, M., Jafaryar, M., Gerdroodbary, M.B., et al. "Influence of novel turbulator on efficiency of solar collector system", Environ. Technol. Innov., 26, (2022). https://doi.org/10.1016/j.eti.2022.102383.
29. Sheikholeslami, M. and Farshad, S.A. "Nanoparticles transportation with turbulent regime through a solar collector with helical tapes", Adv. Powder Technol., 33(3), (2022). https://doi.org/10.1016/j.apt.2022.103510.
30. Ahmad, S., Younis, J., Ali, K., et al. "Impact of swimming gyrotactic microorganisms and viscous dissipation on nanoparticles flow through a permeable medium- a numerical assessment", J. Nanomater., 2022 (2022). https://doi.org/10.1155/2022/4888128.
31. Ahmad, S., Akhter, S., Shahid, M.I., et al. "Novel thermal aspects of hybrid nanofluid flow comprising of manganese zinc ferrite MnZnFe2O4, nickel zinc ferrite NiZnFe2O4 and motile microorganisms", Ain Shams Eng. J., 13(5) (2022). https://doi.org/10.1016/j.asej.2021.101668.
32. Akhter, S., Ahmad, S., and Ashraf, M. "Cumulative impact of viscous dissipation and heat generation on MHD Darcy-Forchheimer ow between two stretchable disks: Quasi linearization technique", J. Sci. Arts, 22(1), pp. 219-232 (2022).
33. Shahid, M.I., Ahmad, S., and Ashraf, M. "Simulation analysis of mass and heat transfer attributes in nanoparticles flow subject to Darcy-Forchheimer medium", Sci. Iran., 29(4), pp. 1828-1837 (2022). DOI: 10.24200/SCI.2022.58552.5786.
34. Ahmad, S., Ali, K., Haider, T., et al. "Thermal characteristics of kerosene oil-based hybrid nanofluids (Ag-MnZnFe2O4): A comprehensive study", Front. Energy Res., 10 (2022). DOI: 10.3389/fenrg.2022.978819.
35. Ali, K., Ahmad, S., Baluch, O., et al. "Numerical study of magnetic field interaction with fully developed flow in a vertical duct", Alex. Eng. J., 61(12), pp. 11351- 11363 (2022).
36. Rasool, G., Shafiq, A., Khalique, C.M., et al. "MHD Darcy-Forchheimer nanofluid flow over a nonlinear stretching sheet", Phys. Scr., 94(10) (2014). https://doi.org/10.1088/1402-4896/ab18c8.