A method for sub-optimal control of the delayed fractional order linear time varying systems with computation reduction approach

Document Type : Research Article

Authors

1 Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran

2 Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

A method for designing suboptimal control for a class of delayed fractional systems is proposed in this paper. Despite theoretical advances in fractional mathematics and computational techniques for solving fractional optimal control (FOC) problems, as well as a lack of comprehensive analytical methods, numerical methods have been developed. For this purpose, in this study, the necessary optimal conditions for the time-delay fractional optimal control (TDFOC) problem are presented first; Then an algorithm for the numerical solution to this problem is suggested. This algorithm is based on a fractional derivative approximation and linear interpolation for delayed arguments. According to this method, the TDFOC problem is transformed into a system of algebraic equations that can be solved numerically. The proposed method's efficiency is assessed by solving several numerical examples.

Keywords


References:
1.Sussmann, H.J. and Willems, J.C. “300 years of optimalcontrol: from the brachystochrone to the maximum principle”, IEEE Control Systems Magazine, 17(3), pp. 32-44 (1997). https://doi.org/10.1109/37.588098.
2.Bryson, A.E. “Optimal control-1950 to 1985”, IEEEControl Systems Magazine, 16(3), pp. 26-33 (1996).https://doi.10.1109/37.506395.
3.Bagley, R.L. and Calico, R. “Fractional order stateequations for the control of viscoelasticallydampedstructures”, Guidance, Control, and Dynamics, 14(2), pp.304-311 (1991). doi.org/10.2514/3.20641.
4.Gorenflo, R. and Mainardi, F. “Fractals and fractionalcalculus in continuum mechanics”, Fractional Calculus:Integral and Differential Equations of Fractional Order.Wien, New York: Springer-Verlag, pp. 223-276 (1997).doi.org/10.1007/978-3-7091-2664-6_5.
5.Podlubny, I. “Fractional differential equations: anintroduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications”, New York: Academic Press., (1998).
6.Hilfer, R. “Applications of fractional calculus in physics”,World Scientific (2000).
7.Machado, J.T. and Guest, J. “Special issue on fractionalcalculus and applications”, Nonlinear Dynamics, 29(1-4),pp. 1-385 (2002).
8.Baleanu, D., Maaraba, T., and Jarad, F. “Fractionalvariational principles with delay”, Physics A:Mathematical and Theoretical, 41(31), 315403 (2008).doi.10.1088/1751-8113/41/31/315403.
9.Jarad, F. and Baleanu, D. “Fractional variational principleswith delay within Caputo derivatives”, Reports on Mathematical Physics, 65(1), pp. 17-28 (2010). DOI: 10.1016/S0034-4877(10)00010-8.
10.Jarad, F., Abdeljawad, T., and Baleanu, D. “Fractionalvariational optimal control problems with delayedarguments”, Nonlinear Dynamics, 62(3), pp. 609-614,(2010), doi.org/10.1007/s11071-010-9748-9.
11.Jarad, F., Abdeljawad, T., and Baleanu, D. “Higher orderfractional variational optimal control problems withdelayed arguments”, Applied Mathematics andComputation, 218(18), pp. 9234-9240 (2012).doi.org/10.1016/j.amc.2012.02.08.
12. Safaie, E., Farahi, M.H., and Ardehaie, M.F. “An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials”, Computational and Applied Mathematics, 34(3), pp. 831-846 (2015). doi.org/10.1007/s40314-014-0142-y.
13. Safaie, E. and Farahi, M.H. “An approximation method for numerical solution of multi-dimensional feedback delay fractional optimal control problems by Bernstein polynomials”, Iranian Journal of Numerical Analysis and Optimization, 4(1), pp. 77-94 (2014). DOI: 10.22067/IJNAO.V4I1.28711.
14. Bhrawy, A. and Ezz-Eldien, S. “A new Legendre operational technique for delay fractional optimal control problems”, Calcolo, 53(4), pp. 521-543 (2016). doi.org/10.1007/s10092-015-0160-1.
15. Jajarmi, A. and Baleanu, D. “Suboptimal control of fractional-order dynamic systems with delay argument”, Journal of Vibration and Control, 24(12), pp. 2430-2446 (2018). https://doi.org/10.1177/1077546316687936.
16. Hosseinpour, S., Nazemi, A., and Tohidi, E. “Müntz–Legendre spectral collocation method for solving delay fractional optimal control problems”, Computational and Applied Mathematics, 351, pp. 344-363 (2019). https://doi.org/10.1016/j.cam.2018.10.058.
17. Sabermahani, S., Ordokhani, Y., and Yousefi, S-A. “Fractional-order Lagrange polynomials: an application for solving delay fractional optimal control problems”, Transactions of the Institute of Measurement and Control, 41(11), pp. 2997-3009 (2019). Doi.10.1177/0142331218819048.
18. Kheyrinataj, F. and Nazemi, A. “Fractional power series neural network for solving delay fractional optimal control problems”, Connection Science, 32(1), pp. 53-80, (2020), doi.org/10.1080/09540091.2019.1605498.
19. Moradi, L., Mohammadi, F., and Baleanu, D. “A direct numerical solution of time-delay fractional optimal control problems by using Chelyshkov wavelets”, Vibration and Control, 25(2), pp. 310-324 (2019). doi.org/10.1177/107754631877733.
20. Ziaei, E. and Farahi, M.H. “The approximate solution of non-linear time-delay fractional optimal control problems by embedding process”, IMA Journal of Mathematical Control and Information, 36(3), pp. 713-727 (2018). doi.org/10.1093/imamci/dnx063.
21. Erturk, V., Godwe, E., Baleanu, D., et al. “Novel fractional-order Lagrangian to describe motion of beam on nanowire”, Acta Physica Polonica A, 140(3), pp. 265-272 (2021). DOI: 10.12693/APhysPolA.140.265.
22. Jajarmi, A., Baleanu, D., Vahid, K.Z., et al. “A new and general fractional Lagrangian approach: a capacitor microphone case study”, Results in Physics, 31, 104950, (2021). DOI: 10.12693/APhysPolA.140.265.
23. Marzban, H.R. “A new fractional orthogonal basis and its application in nonlinear delay fractional optimal control problems”, ISA Transactions, 114, pp. 106-119 (2021). doi.org/10.1016/j.isatra.2020.12.037.
24. Baleanu, D., Ghassabzade, F.A., Nieto, J.J., et al. “On a new and generalized fractional model for a real cholera outbreak”, Alexandria Engineering Journal, 61(11), pp. 9175-9186 (2022), https://doi.org/10.1016/j.aej.2022.02.054.
25. Jajarmi, A., Baleanu, D., Sajjadi, S.S., et al. “Analysis and some applications of a regularized Ψ–Hilfer fractional derivative”, Journal of Computational and Applied Mathematics, 415, 114476 (2022). https://doi.org/10.1016/j.cam.2022.114476.
26. Kilbas, A.A. Srivastava, H.M., and Trujillo, J.J. “Theory and applications of fractional differential equations”, 204, Elsevier (2006).
27. Agrawal, O.P. and Baleanu, D. “A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems”, Vibration and Control, 13(9-10), pp. 1269-1281 (2007). doi.org/10.1177/1077546307077467.
28. Burden, R.L. Faires, J.D., and Reynolds, A., Numerical Analysis, 2nd Ed., Prindle, Webber and Schmidt, Boston, MA (1981).
29. Banks, H. and Burns, J. “Hereditary control problems: numerical methods based on averaging approximations”, SIAM Journal on Control Optimization, 16(2), pp. 169-208 (1978). https://epubs.siam.org/doi/10.1137/0316013.
30. Palanisamy, K. and Prasada, R.G. “Optimal control of linear systems with delays in state and control via Walsh functions”, IEE Proceedings D (Control Theory and Applications), 130(6), pp. 300-312, (1983), https://doi.org/10.1049/ip-d.1983.005131.
31. Moradi, L. and Mohammadi, F. “A comparative approach for time-delay fractional optimal control problems: Discrete versus continuous chebyshev polynomials”, Asian Journal of Control, 22(1), pp. 204-216 (2020). https://doi.org/10.1002/asjc.1858.
32. Mohammadi, F. “A discrete orthogonal polynomials approach for fractional optimal control problems with time delay”, Iranian Journal of Numerical Analysis Optimization, 9(2), pp. 49-75 (2019). DOI: 10.22067/IJNAO.V9I2.73622.
33. Jajarmi, A. and Hajipour, M. “An efficient finite difference method for the time‐delay optimal control problems with time‐varying delay”, Asian Journal of Control, 19(2), pp. 554-563 (2017). https://doi.org/10.1002/asjc.1371.
34. Marzban, H.R. and Malakoutikhah, F. “Solution of delay fractional optimal control problems using a hybrid of block-pulse functions and orthonormal Taylor polynomials”, Journal of the Franklin Institute, 356(15), pp. 8182-8215 (2019). doi.org/10.1016/j.jfranklin.2019.07.010.
35. Dadebo, S. and Luus, R. “Optimal control of time‐delay systems by dynamic programming”, Optimal Control Applications and Methods, 13(1), pp. 29-41 (1992). doi.org/10.1002/oca.4660130103.
36. Palanisamy, K., Balachandran, K., and Ramasamy, R. “Optimal control of linear time-varying delay systems via single-term Walsh series”, IEE Proceedings D-Control Theory and Applications, 135(4), p. 332 (1988). https://doi.org/10.1049/ip-d.1988.0048.
Volume 32, Issue 1
Transactions on Computer Science & Engineering and Electrical Engineering
January and February 2025 Article ID:6575
  • Receive Date: 10 March 2022
  • Revise Date: 30 October 2022
  • Accept Date: 21 November 2022