Characterization of an in-house prepared magnetorheological fluid and vibrational behavior of composite sandwich beam with magnetorheological fluid core

Document Type : Research Note


Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru, Karnataka 575025, India


In this research work, two different compositions of MR fluid samples with 24 and 30 percentage (%) volume fraction of carbonyl iron (CI) particles are prepared. Prepared MR fluid (MRF) samples contain carbonyl iron particles as a dispersive medium, silicone oil as a carrier fluid, and white lithium grease as an anti-settling agent. Influence of oscillating driving frequency, strain amplitude, magnetic field, and the percentage of CI particle on the rheological properties of the MR fluid samples are presented. Storage modulus and loss factor equations are estimated from the rheometry results using a linear regression method. The properties of MR fluid samples are taken to design and model the sandwich beams using ANSYS ACP software, where carbon epoxy composite material is used as the face layer and MR fluid as the core material. Modal, harmonic, and transient analysis studies have been conducted on all the modelled sandwich beams. Influence of MR fluid core material thickness, face layer thickness, CI particle volume percentage in the prepared MR fluid sample, and magnetic field on the vibrational response of the sandwich beams have been presented. Carbon-epoxy composites with an in-house made MRF sandwich beam has shown some significant results in the vibrational response.


1. Rabinow, J. "The magnetic  fluid clutch", Trans. Am. Inst. Electr. Eng., 67, pp. 1308-1315 (1948).
2. Ashtiani, M., Hashemabadi, S.H., and Ghaffari, A. "A review on the magnetorheological fluid preparation and stabilization", J. Magn. Magn. Mater., 374, pp. 711- 715 (2015).
3. Kolekar, S., Venkatesh, K., Oh, J.S., et al. "Vibration controllability of sandwich structures with smart materials of electrorheological fluids and magnetorheological materials: A Review", J. Vib. Eng. Technol., 7(4), pp. 359-377 (2019).
4. Kciuk, M. and Turczyn, R. "Properties and applications of magnetorheological fluids", Frat. ed Integrita Strutt. , 23(May 2014), pp. 57-61 (2012).
5. Iglesias, G.R., Lopez-Lopez, M.T., Duran, J.D.G., et al. "Dynamic characterization of extremely bidisperse magnetorheological  fluids", J. Colloid Interface Sci., 377(1), pp. 153-159 (2012).
6. Hajalilou, A., Amri Mazlan, S., Lavvafi, H., et al., Field Responsive Fluids as Smart Materials, Singapore: Springer (2016).
7. Kumar Kariganaur, A., Kumar, H., and Arun, M. "Effect of temperature on sedimentation stability and  flow characteristics of magnetorheological  fluids with damper as the performance analyser", J. Magn. Magn. Mater., 555(April), 169342 (2022).
8. Kumar Kariganaur, A., Kumar, H., and Arun, M. "Influence of temperature on magnetorheological fluid properties and damping performance", Smart Mater. Struct., 31(5), 055018 (2022).
9. Shyam, R., Saini, T., Kumar, H., et al. "Optimal design of flow mode semi-active prosthetic knee dampers", Sci. Iran., 29, pp. 1-39 (2022).
10. Allahverdizadeh, A., Mahjoob, M.J., Nasrollahzadeh, N., et al. "Optimal parameters estimation and vibration control of a viscoelastic adaptive sandwich beam incorporating an electrorheological  fluid layer", JVC/Journal Vib. Control, 20(12), pp. 1855-1868 (2014).
11. Brooks, D., Goodwin, J., Hjelm, C., et al. "Viscoelastic studies on an electro-rheological fluid", Colloids and Surfaces, 18(2-4), pp. 293-312 (1986).
12. Weiss, K.D., Carlson, J.D., and Nixon, D.A. "Viscoelastic properties of magneto- and electro-rheological fluids", J. Intell. Mater. Syst. Struct., 5(6), pp. 772- 775 (1994).
13. Li, W.H., Chen, G., and Yeo, S.H. "Viscoelastic properties of MR fluids", Smart Mater. Struct., 8(4), pp. 460-468 (1999).
14. Esmaeilnezhad, E., Jin Choi, H., Schaffie, M., et al. "Rheological analysis of magnetite added carbonyl iron based magnetorheological  fluid", J. Magn. Magn. Mater., 444, pp. 161-167 (2017).
15. Yalcintas, M. and Dai, H. "Magnetorheological and electrorheological materials in adaptive structures and their performance comparison", Smart Mater. Struct., 8(5), pp. 560-573 (1999).
16. Yalcintas, M. and Dai, H. "Vibration suppression capabilities of magnetorheological materials based adaptive structures", Smart Mater. Struct., 13(1), pp. 1-11 (2004).
17. Eshaghi, M., Sedaghati, R., and Rakheja, S. "Dynamic characteristics and control of magnetorheological/ electrorheological sandwich structures: A state-ofthe- art review", J. Intell. Mater. Syst. Struct., 27(15), pp. 2003-2037 (2016).
18. Ahamed, R., Choi, S.B., and Ferdaus, M.M. "A state of art on magneto-rheological materials and their potential applications", J. Intell. Mater. Syst. Struct., 29(10), pp. 2051-2095 (2018).
19. Dyniewicz, B., Bajkowski, J.M., and Bajer, C.I. "Semiactive control of a sandwich beam partially filled with magnetorheological elastomer", Mech. Syst. Signal Process., 60, pp. 695-705 (2015).
20. Taghizadeh, S. and Karamodin, A. "Comparison of adaptive magnetorheological elastomer isolator and elastomeric isolator in near-field and far-field earthquakes", Sci. Iran., 28(1A), pp. 15-37 (2021).
21. Lara-Prieto, V., Parkin, R., Jackson, M., et al. "Vibration characteristics of MR cantilever sandwich beams: Experimental study", Smart Mater. Struct., 19(1), 015005 (2010).
22. Acharya, S., Allien, V.J., N P, P., et al. "Dynamic behavior of sandwich beams with different compositions of magnetorheological  fluid core", Int. J. Smart Nano Mater., 12(1), pp. 88-106 (2021).
23. Naji, J., Zabihollah, A., and Behzad, M. "Vibration characteristics of laminated composite beams with magnetorheological layer using layerwise theory", Mech. Adv. Mater. Struct., 25(3), pp. 202-211 (2018).
24. Naji, J., Zabihollah, A., and Behzad, M. "Vibration Behavior of Laminated Composite Beams Integrated with Magnetorheological Fluid Layer", J. Mech., 33(4), pp. 417-425 (2017).
25. Zabihollah, A., Naji, J., and Zareie, S. "Impact Analysis of MR-Laminated Composite Structures", Emerg. Trends Mechatronics, pp. 1-14 (2020).
26. Rajamohan, V., Sedaghati, R., and Rakheja, S. "Vibration analysis of a multi-layer beam containing magnetorheological fluid", Smart Mater. Struct., 19(1), 015013 (2010).
27. Rajamohan, V., Rakheja, S., and Sedaghati, R. "Vibration analysis of a partially treated multi-layer beam with magnetorheological  fluid", J. Sound Vib., 329(17), pp. 3451-3469 (2010).
28. Allien, J.V., Kumar, H., and Desai, V. "Semi-active vibration control of SiC-reinforced Al6082 metal matrix composite sandwich beam with magnetorheological fluid core", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 234(3), pp. 408-424 (2020).
29. Allien, J.V., Kumar, H., and Desai, V. "Semi-active vibration control of MRF core PMC cantilever sandwich beams: Experimental study", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 234(4), pp. 574-585 (2020).
30. International, A. "Standard test method for measuring vibration-damping properties of materials E756-9804", 05(Reapproved), pp. 1-18 (2017).
31. Salehi, M., Bakhtiari-Nejad, F., and Besharati, A. "Time-domain analysis of sandwich shells with passive constrained viscoelastic layers", Sci. Iran., 15(5), pp. 637-643 (2008).
32. Sahoo, S.S., Hirwani, C.K., Panda, S.K., et al. "Numerical analysis of vibration and transient behaviour of laminated composite curved shallow shell structure: An experimental validation", Sci. Iran., 25(4), pp. 2218-2232 (2018).