Flux-weakening control of linear induction motor drives considering the primary resistance and end effect

Document Type : Research Article

Author

Department of Railway Engineering and Transportation Planning, University of Isfahan, Isfahan, Iran

Abstract

Indirect field-oriented control (IFOC) of a linear induction motor (LIM) drive is an important challenge because of the end effect and nonlinear behavior of the LIM drive. It becomes more complex in high-speed applications and flux-weakening (FW) regions when current and voltage constraints must be satisfied. Moreover, considering the primary resistance in voltage constraint inequality makes the calculations even more complicated.
This work presents a new FW control algorithm for LIM drives, considering the end effect and the primary resistance. Consequently, the reference d-axis current and maximum q-axis current are modified considering the primary resistance and end effect. Accordingly, new control strategies for the partial and full FW regions are implemented in a LIM drive. Fuzzy Logic Controller (FLC) has been used to overcome the nonlinear behavior of LIM drive and achieve appropriate dynamic characteristics. Simulation results validate the effectiveness of the suggested LIM drive based on FLC in different speed regions. Moreover, Results manifest that in a LIM drive with end effect consideration, the base and the critical speeds are not constant. As the LIM speed increases, the base frequency reduces, whereas the critical frequency increases.

Keywords


References:
1.Wang, K., Li, Y., Ge, Q., et al. “An improved indirectfield-oriented control scheme for linear induction motortraction drives,” IEEE Transactions on IndustrialElectronics, 65(12), pp. 9928-9937 (2018).
DOI: 10.1109/TIE.2018.2815940
2.Sul, S.K., Control of Electric Machine Drive Systems,Wiley-IEEE Press (2011).
DOI:10.1002/9780470876541
3.Quang, N.P. and Dittrich, J.A., Vector Control of Three-Phase AC Machines: System Development in thePractice”, Springer (2015). DOI: 10.1007/978-3-662-46915-6
4.Rodriguez, J. and Cortes, P., Predictive Control ofPower Converters and Electrical Drives, John Wiley &Sons (2012). DOI: 10.1002/9781119941446
5.Accetta, A., Cirrincione, M., Pucci, M., et al. “Statespace-vector model of linear induction motors including end-effects and iron losses Part I: Theoretical analysis,”
P. Hamedani/ Scientia Iranica (2025) 32(1): 6623
IEEE Transactions on Industry Applications, 56(1), pp. 235-244 (2020). DOI:
10.1109/TIA.2019.2952031 6.
Hu, D., Xu, W., Dian, R., et al. “Loss minimizationcontrol of linear induction motor drive for linearmetros”, IEEE Transactions on Industrial Electronics,65(9), pp. 6870-6880 (2018).
DOI: 10.1109/TIE.2017.2784343
7.Susluoglu, B. and Karsli, V.M. “Direct thrust controlledlinear induction motor including end effect”, In Proc. ofthe 13th International Power Electronics and MotionControl Conference (EPE-PEMC), pp. 850-854 (2008).DOI: 10.1109/EPEPEMC.2008.4635373
8.Zhao, J., Yang, Z., Liu, J., et al. “Indirect vector controlscheme for linear induction motors using single neuronPI controllers with and without the end effects”, In Proc.of the 7th Word Congress on Intelligent Control andAutomation, China, pp. 5263-5267 (2008).DOI: 10.1109/WCICA.2008.4593785
9.Sung, J.H. and Nam, K. “A new approach to vectorcontrol for a linear induction motor considering endeffects”, In Proc. of the IEEE Industry ApplicationsConference, 4, pp. 2284-2289 (1999).
DOI: 10.1109/IAS.1999.799162.
10.Silva, E.F., Santos, E.B., Machado, P.C.M., et al. “Vector control for linear induction motor”, In 3rd IEEEInternational Conference on Industrial Technology(ICIT 2003), Maribor, Slovenia, pp. 518-523 (2003).DOI: 10.1109/ICIT.2003.1290384
11.Duncan, J. “Linear induction motor-equivalent-circuitmodel”, IEE Proc. Power Application, 130(1), pp. 51-57 (1983). DOI: 10.1049/ip-b.1983.0008
12.Kang, G. and Nam, K. “Field-oriented control schemefor linear induction motor with the end effect”, IEEProc. on Electric Power Appl., 152(1), pp. 1565-1572(2005). DOI: 10.1049/ip-epa:20045200 (https://digital-library.theiet.org/doi/10.1049/ip-epa%3A20045185)
13.Kim, S.H. and Sul, S.K. “Maximum torque control ofan induction machine in the field weakening region”,IEEE Transactions on Industry Applications, 31(4), pp.787-794 (1995). DOI: 10.1109/28.395288
14.Kim, S.H. and Sul, S.K. “Voltage control strategy formaximum torque operation of an induction machine inthe field-weakening region”, IEEE Transaction onIndustrial Electronics, 44(4), pp. 512-518 (1997).DOI: 10.1109/41.605628
15.Levi, E. and Wang, M. “A speed estimator for highperformance sensor less control of induction motors inthe field weakening region”, IEEE Transaction onPower Electronics, 17(3), pp. 365-378 (2002).
DOI: 10.1109/TPEL.2002.1004244
16.Seok, J.K. and Sul, S.K. “Optimal flux selection of aninduction machine for maximum torque operation influx-weakening region”, IEEE Transaction on PowerElectronics, 14(4), pp. 700-708 (1999).
DOI: 10.1109/63.774208
17.Song, S.H. Choi, J.W., and Sul, S.K. “Transient torquemaximizing strategy of induction machine in fieldweakening region”, In IEEE Power ElectronicsSpecialists Conference (PESC), 2, Fukuoka, pp. 1569-1574 (1998). DOI: 10.1109/PESC.1998.703387
18.Nguyen-Thac, K., Orlowska-Kowalska, T., andTarchala, G. “Comparative analysis of the chosen field-weakening methods for the direct rotor flux orientedcontrol drive system”, Archives of ElectricalEngineering, 61(4), pp. 443-454 (2012).
DOI: 10.2478/v10171-012-0038-7
19.Nguyen-Thac, K., Orlowska-Kowalska, T., andTarchala, G. “Influence of the stator winding resistanceon the field-weakening operation of the DRFOCinduction motor drive”, Bulletin of the Polish Academyof Sciences –Technical Sciences, 60(4), pp. 815-823(2012). DOI: 10.2478/v10175-012-0095-5
20.Bianchi, N., Carlet, P.G., Cinti, L., et al. “Review aboutflux-weakening operating limits and control techniquesfor synchronous motor drives”, Energies, 15(5), p. 1930(2022). DOI: 10.3390/en15051930
21.Lopez, G.G., Gunawan, F.S., and Walters, J.E. “Currentcontrol of induction machines in the field-weakenedregion”, IEEE Transactions on Industry Applications,43(4), pp. 981-989 (2007).
DOI: 10.1109/TIA.2007.900459
22.Wu, C., Yang, J., and Li, Q. “GPIO-Based nonlinearpredictive control for flux-weakening current control ofthe IPMSM servo system”, Energies, 13(7), pp. 1-21(2020). DOI: 10.3390/en13071716
23.Liu, J., Gong, C., Han, Z., et al. “IPMSM modelpredictive control in flux-weakening operation using animproved algorithm”, IEEE Transactions on IndustrialElectronics, 65(12), pp. 9378-9387 (2018).DOI: 10.1109/TIE.2018.2818640
24.Zhang, Y., Jin, J., Jiang, H., et al. “Adaptive PIparameter of flux-weakening controller based onvoltage feedback for model predictive control ofSPMSM”, 2020 IEEE Energy Conversion Congress andExposition (ECCE), Detroit, USA, pp. 2674-2681(2020). DOI: 10.1109/ECCE44975.2020.9235453
25.Hou, P., Wang, X., and Sheng, Y. “Research on flux-weakening control system of interior permanent magnetsynchronous motor based on fuzzy sliding modecontrol”, In 2019 Chinese Control and DecisionConference (CCDC), Nanchang, China, pp. 3151-3156(2019). DOI: 10.1109/CCDC.2019.8832483
26.Xu, W., Ismail, M.M., Liu, Y., et al. “Parameteroptimization of adaptive flux-weakening strategy forpermanent-magnet synchronous motor drives based onparticle swarm algorithm”, IEEE Transactions onPower Electronics, 34(12), pp. 12128-12140 (2019).DOI: 10.1109/TPEL.2019.2908380
27.Wang, C. and Zhu, Z.Q. “Fuzzy logic speed control ofpermanent magnet synchronous machine and feedbackvoltage ripple reduction in flux-weakening operationregion”, IEEE Transactions on Industry Applications,56(2), pp. 1505-1517 (2020).
DOI: 10.1109/TIA.2020.2967673
28.Xu, Y., Morito, Ch., and Lorenz, R.D. “Extending high-speed operating range of induction machine drives using deadbeat-direct torque and flux control with precise fluxweakening”, IEEE Transactions on IndustryApplications, 55(4), pp. 3770-3780 (2019).DOI: 10.1109/TIA.2019.2908342
P. Hamedani/ Scientia Iranica (2025) 32(1): 6623
29.Cai, H., Xu, L., and Pina, A.J. “Maximum torquecontrol of induction machine in deep flux weakeningregion”, In
2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, Canada, pp. 20-24(2015). DOI: 10.1109/ECCE.2015.7310215
30.Dong, Zh., Yu, Y., Li, W., et al. “Flux-weakeningcontrol for induction motor in voltage extension region:Torque analysis and dynamic performanceimprovement”,
IEEE Transactions on IndustrialElectronics, 65(5), pp. 3740–3751 (2018).
DOI: 10.1109/TIE.2017.2764853
31.Dong, Zh., Wang, B., Yu, Y., et al. “Operating pointselected flux-weakening control of induction motor fortorque-improved high-speed operation under multipleworking conditions”, IEEE Transactions on PowerElectronics, 34(12), pp. 12011-12023 (2019).DOI: 10.1109/TPEL.2019.2905536
32.Xu, W., Tang, Y., Dong, D., et al. “Optimal referenceprimary flux based model predictive control of linearinduction machine with MTPA and field-weakeningoperations for urban transit”, IEEE Transactions onIndustry Applications, 58(4), pp. 4708-4721 (2022).DOI: 10.1109/TIA.2022.3166458
33.Zou, J., Xu, W., Yu, X., et al. “Multistep modelpredictive control with current and voltage constraintsfor linear induction machine based urbantransportation”, IEEE Transactions on VehicularTechnology, 66(12), pp. 10817-10829 (2017).DOI: 10.1109/TVT.2017.2736533
34.Hamedani, P. and Shoulaie, A. “Modification of thefield-weakening control strategy for linear inductionmotor drives considering the end effect”, Advances inElectrical and Computer Engineering (AECE), 15(3),pp. 3-12 (2015). DOI: 10.4316/AECE.2015.03001
35.Hamedani, P., Sadr, S., and Shoulaie, A. “Independentfuzzy logic control of two five-phase linear inductionmotors supplied from a single voltage source inverter”,Journal of Electrical and Computer EngineeringInnovations (JECEI), 10(1), pp. 195-208 (2021). DOI:
10.22061/JECEI.2021.8091.479
36.Hamedani, P. and Shoulaie, A. “Utilization of CHBmultilevel inverter for harmonic reduction in fuzzy logic controlled multiphase LIM drives”, Journal ofElectrical and Computer Engineering Innovations(JECEI), 8(1), pp. 19-30 (2020).
DOI: 10.22061/JECEI.2020.6664.355
Volume 32, Issue 1
Transactions on Computer Science & Engineering and Electrical Engineering
January and February 2025 Article ID:6623
  • Receive Date: 10 April 2022
  • Revise Date: 17 August 2022
  • Accept Date: 07 November 2022