Removal of nickel(II) ions, low-level pollutants, and total bacterial colony count from wastewater by composite nanofiber film

Document Type : Article

Authors

Department of Polymer and Petrochemical Industries Engineering College of Materials Engineering, University of Babylon, Al Hilla-51001, Iraq

Abstract

This study clarifies the important role of nanofibers produced from polyacrylonitrile after reinforcement with iron nanoparticles (γ-Fe2O3), to expand the applications of these fibers and to combine their ability to remove Nickel (II) from aqueous solutions with their ability to remove pollutants such as total suspended solids, total nitrogen, chemical oxygen demand, and cyanide as well as killing the bacteria in wastewater. The results of the absorption of Nickel (II) after treatment of the aqueous solution were obtained by an atomic absorption spectrometer type (AAs-7000) and a spectrometer type (Hach DR2800) after treating samples of wastewater obtained pollutant absorption results. The adsorption kinetic parameters results for Nickle (II) proved that the rates of increase in the maximum absorption capacity were 43.27 to 133.5 and from 74.63 to 178.571 mg/g when increasing the initial concentration (10-50 mg/L) for first and second order models. The pH, contact time, electrical conductivity, and initial concentration are good indicators of adsorption efficiency of Nickel (II), the high removal efficiency was 23.96 % at low initial concentration. Also, an increase the reduction rate and increased in TN: TP ratio were significant to increase the reduction rate of the total bacteria up 90 % at 8 hours.

Keywords


References:
1. Habeeb, S., Rajabi, L., and Dabirian, F. "Comparing two electrospinning methods in producing polyacrylonitrile nanofibrous tubular structures with enhanced properties", Iran. J. Chem. Chem. Eng. (IJCCE), 38(3), pp. 23-42 (2019).
2. Habeeb, S.A., Rajabi, L., and Dabirian, F. "Production of polyacrylonitrile/boehmite nanofibrous composite tubular structures by opposite-charge electrospinning with enhanced properties from a lowconcentration polymer solution", Polym. Compos, 41(4), pp. 1649-1661 (2020).
3. Habeeb, S.A., Alobad, Z.K., and Albozahid, M.A., "The effecting of physical properties of inorganic fillers on swelling rate of rubber compound: A review Study", J. Univ. Babylon Eng. Sci., 27(1), pp. 94-104 (2019).
4. Albozahid, M., Habeeb, S.A., Alhilo, N.A.I., et al. "The impact of graphene nanofiller loading on the morphology and rheology behaviour of highly rigid polyurethane copolymer", Mater. Res. Express, 7(12), 125304 (2020).
5. Habeeb, S.A., Hasan, A.S., T alu, S., et al. "Enhancing the properties of styrene-butadiene rubber by adding borax particles of different sizes", Iran. J. Chem. Chem. Eng., 40(5), pp. 1616-1629 (2021).
6. Habeeb, S.A., Diwan, A., and Albozahid, M. "A compressive review on swelling parameters and physical properties of natural rubber nano composites", Egypt. J. Chem, 64(10), pp. 5713-5724 (2021). DOI: 10.21608/ejchem.2021.72560.3613.
7. Faris, D., Hadi, N.J., and Habeeb, S.A. "Effect of rheological properties of (Poly vinyl alcohol/ Dextrin/Naproxen) emulsion on the performance of drug encapsulated nanofibers", Materials Today: Proceedings, 42, pp. 2725-2732 (2021).
8. Kenawy, E.R., Worley, S.D., and Broughton, R. "The chemistry and applications of antimicrobial polymers: a state-of-the-art review", Biomacromolecules, 8(5), pp. 1359-1384 (2007).
9. Haider, S. and Park, S.Y. "Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu (II) and Pb (II) ions from an aqueous solution", J. Membr. Sci., 328(1-2), pp. 90-96 (2009).
10. Saeed, K., Haider, S., Oh, T.J., et al. "Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption", J. Membr. Sci., 322(2), pp. 400-405 (2008).
11. Sun, B., Li, X., Zhao, R., et al . "Hierarchical aminated PAN/ -AlOOH electrospun composite nanofibers and their heavy metal ion adsorption performance", J. Taiwan Inst. Chem. Eng., 62, pp. 219-227 (2016).
12. Awual, M.R. "A novel facial composite adsorbent for enhanced copper (II) detection and removal from wastewater", Chem. Eng. J., 266, pp. 368-375 (2015).
13. Islam, M.A., Awual, M.R., and Angove, M.J. "A review on nickel(II) adsorption in single and binary component systems and future path", J. Environ. Chem. Eng., 7(5), 103305 (2019).
14. Awual, M.R., Hasan, M.M., Iqbal, J., et al. "Ligand based sustainable composite material for sensitive nickel(II) capturing in aqueous media", J. Environ. Chem. Eng., 8(1), 103591 (2020).
15. Awual, M.R., Hasan, M.M., Khaleque, M.A., et al. "Treatment of copper (II) containing wastewater by a newly developed ligand based facial conjugate materials", Chem. Eng. J., 288, pp. 368-376 (2016).
16. Sheikh, T.A., Arshad, M.N., Rahman, M.M., et al. "Trace electrochemical detection of Ni2+ions with bidentate N, N0-(ethane-1, 2-diyl) bis (3, 4-dimethoxybenzenesulfonamide)[EDBDMBS] as a chelating agent", Inorganica Chim. Acta, 464, pp. 157-166 (2017).
17. Xu, P., Zeng, G.M., Huang, D.L., et al. "Use of iron oxide nanomaterials in wastewater treatment: a review", Sci. Total Environ, 424, pp. 1-10 (2012).
18. Awual, M.R. "Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater", Chem. Eng. J., 307, pp. 456-465 (2017).
19. Shahat, A., Hassan, H.M., El-Shahat, et al. "Visual nickel(II) ions treatment in petroleum samples using a mesoporous composite adsorbent", Chem. Eng. J., 334, pp. 957-967 (2018).
20. Hasan, M.M., Shenashen, M.A., Hasan, M.N., et al. "Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater", J. Mol. Liq., 323, 114587 (2021).
21. Abbas, K., Znad, H., and Awual, M.R. "A ligand anchored conjugate adsorbent for effective mercury (II) detection and removal from aqueous media", Chem. Eng. J., 334, pp. 432-443 (2018).
22. Sun, Y., Chen, T.Y., Worley, S.D., et al. "Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives", Polym. Sci., Part A: Polym. Chem., 39(18), pp. 3073-3084 (2001).
23. Zhang, L., Luo, J., Menkhaus, T.J., et al. "Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers", J. Membr. Sci., 369(1-2), pp. 499-505 (2011).
24. Fahimirad, S., Fahimirad, Z., and Sillanpaa, M. "Efficient removal of water bacteria and viruses using electrospun nanofibers", Sci. Total Environ., 751, 141673 (2021).
25. Mohsenibandpey, A., Eslami, A., Maleh, H.K., et al. "Investigating the efficiency of nanocomposite membranes synthesized by polyacrylonitrile polymers containing single-walled carbon nanotubes in decreasing chemical and biological pollution indicators of greywater", Bulg Chem Commun, 2016(48), pp. 102- 111(2016).
26. Anderson, R.C. and Yu, P.L. "Factors affecting the antimicrobial activity of ovine-derived cathelicidins against E.", coli 0157: H7. Int. J. Antimicrob. Agents, 25(3), pp. 205-210 (2005).
27. Xu, S., Yao, J., Ainiwaer, M., et al. "Analysis of bacterial community structure of activated sludge from wastewater treatment plants in winter", Biomed Res. Int., 2018, pp. 1-8 (2018).
28. Harris, T.D., Smith, V.H., Graham, J.L., et al. "Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs", Inland Waters, 6(2), pp. 199-210 (2016).
29. Zeinaddine, H.R., Ebrahimi, A., Alipour, V., et al. "Removal of nitrogen and phosphorous from wastewater of seafood market by intermittent cycle extended aeration system (ICEAS)", J. Health Sci. Surveill. Syst., 1(2), pp. 89-93 (2013).
30. Nadhim, B.A. and Habeeb, S.A. "Studying the physical properties of non-woven polyacrylonitrile nanofibers after adding 
-Fe2O3 nanoparticles", Egypt. J. Chem, 64(12), pp. 7621-7630 (2021). DOI: 10.21608/ejchem.2021.75271.3694.
31. Nabizadeh, R., Jahangiri-rad, M., and Sadjadi, S. "Modelling the effects of competing anions on  fluoride removal by functionalized polyacrylonitrile coated with iron oxide nanoparticles", S. Afr. J. Chem., 68, pp. 201-207 (2015).
32. MacFaddin, J.F., Biochemical Tests for Identification of Medical Bacteria, Lippincott Williams and Wilkins, USA, (2000), http://vlib.kmu.ac.ir/kmu/handle/kmu/89211.
33. Jafarnejad, M., Asli, M.D., Taromi, F.A., et al. "Synthesis of multi-functionalized Fe3O4-NH2-SH nanofiber based on chitosan for single and simultaneous adsorption of Pb (II) and Ni (II) from aqueous system", Int. J. Biol. Macromol, 148, pp. 201-217 (2020).
34. Behera, S.K., Sahni, S., Tiwari, G., et al "Removal of chromium from synthetic wastewater using modified maghemite nanoparticles", Appl. Sci., 10(9), 3181 (2020).
35. Dizge, N., Keskinler, B., and Barlas, H. "Sorption of Ni(II) ions from aqueous solution by Lewatit cationexchange resin", J. Hazard. Mater., 167(1-3), pp. 915- 926 (2009). DOI:10.1016/j.jhazmat.2009.01.073.
36. Qasem, N.A., Mohammed, R.H., and Lawal, D.U. "Removal of heavy metal ions from wastewater: A comprehensive and critical review", Npj Clean Water, 4(1), pp. 1-15 (2021).
37. Li, T.T., Wang, Z., Ren, H.T., et al. "Recyclable and degradable nonwoven-based double-network composite hydrogel adsorbent for efficient removal of Pb (II) and Ni (II) from aqueous solution", Sci. Total Environ., 758, 143640 (2021).
38. Ciesielczyk, F., Bartczak, P., Wieszczycka, K., et al. "Adsorption of Ni (II) from model solutions using coprecipitated inorganic oxides", Adsorption, 19(2-4), pp. 423-434 (2013).
39. Hu, Y., Wu, X., He, X., et al. "Phosphorylated polyacrylonitrile-based electrospun nanofibers for removal of heavy metal ions from aqueous solution", Polym Adv Technol, 30(3), pp. 545-551 (2019).
40. Utomo, S.B., Jumina, J., Siswanta, D., et al. "Kinetics and equilibrium model of Pb (II) AND Cd (II) adsorption onto tetrakis-thiomethyl-C-4-methoxyphenylcalix resorcinarene", Indones. J. Chem., 12(1), pp. 49-56 (2012).
41. Mahapatra, A., Mishra, B.G., and Hota, G. "Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution", J. Hazard. Mater., 258, pp. 116-123 (2013).
42. Duong, H.C., Pham, T.M., Luong, S.T., et al. "A novel application of membrane distillation to facilitate nickel recovery from electroplating wastewater", Environ. Sci. Pollut. R., 26(23), pp. 23407-23415 (2019).
43. Basra, S., Iqbal, Z., Ur-Rehman, H., et al. "Time course changes in pH, electrical conductivity and heavy metals (Pb, Cr) of wastewater using Moringa oleifera Lam. seed and alum, a comparative evaluation", J. Appl. Res. Technol, 12(3), pp. 560-567 (2014).
44. Akhurst, D.J., Jones, G.B., Clark, M., et al. "Phosphate removal from aqueous solutions using neutralised bauxite refinery residues (BauxsolTM)", Environ. Chem., 3(1), pp. 65-74 (2006).
45. Sallam, A.E.A., Al-Zahrani, M.S., Al-Wabel, M.I., et al. "Removal of Cr (VI) and toxic ions from aqueous solutions and tannery wastewater using polymer-clay composites", Sustainability, 9(11), 1993 (2017).
46. Zheng, J., Sun, B., Wang, X.X., et al. "Magneticelectrospinning synthesis of  -Fe2O3 nanoparticleembedded  flexible nanofibrous films for electromagnetic shielding", Polymers, 12(3), 695 (2020).
47. Ijagbemi, C.O., Baek, M.H., and Kim, D.S. "Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions", J. Hazard. Mater, 166(1), pp. 538-546 (2009).
48. Nalbandian, M.J.C. "Development and optimization of chemically-active electrospun nanofibers for treatment of impaired water sources", University of California, Riverside (2014).
49. Dizge, N., Keskinler, B., and Barlas, H. "Sorption of Ni(II) ions from aqueous solution by Lewatit cationexchange resin", J. Hazard. Mater, 167(1-3), pp. 915- 926 (2009).
50. Butler, B.A. and Ford, R.G. "Evaluating relationships between Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) in a mining-influenced watershed", Mine Water Environ., 37(1), pp. 18-30 (2018).
51. Zendehdel, M. and Nouri, F.H. "Electrospun polyethersulfone/Ag-Clinoptilolite to remove chemical oxygen demand from real wastewater", Polym. Polym. Compos, 29(9-suppl), S1498-S1509 (2021).
52. Khulbe, K.C. and Matsuura, T. "Art to use electrospun nanofbers/nanofber based membrane in waste water treatment, chiral separation and desalination", J. Membr. Sci. Res., 5(2), pp. 100-125 (2019).
53. Potivichayanon, S., Toensakes, R., Supromin, N., et al. "Removal of high levels of cyanide and COD from cassava industrial wastewater by a fixed-film sequencing batch reactor", Water Air Soil Pollut, 231, pp. 1-14 (2020).
54. Yehya, T. "Study of electrochemical and biological processes for the removal of water pollutants: application to nitrates and carbamazepine", Doctoral dissertation, Universite Blaise Pascal-Clermont-Ferrand II (2015).
55. Jahan, M.A.A., Akhtar, N., Khan, N.M.S., et al. "Characterization of tannery wastewater and its treatment by aquatic macrophytes and algae", Bangladesh J. Sci. Ind. Res., 49(4), pp. 233-242 (2014).
56. Nasir, A., Arslan, C., Khan, M.A., et al. "Industrial waste water management in district Gujranwala of Pakistan-current status and future suggestions", Pak. J. Agric. Sci., 49(1), pp. 79-85 (2012).
57. Saravanan, A., Kumar, P.S., Jeevanantham, S., et al. "Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development", Chemosphere, 280, 130595 (2021).
58. Zamel, D. and Khan, A.U. "Bacterial immobilization on cellulose acetate based nanofibers for methylene blue removal from wastewater: Mini-review", Inorg. Chem. Commun., 131, 108766 (2021).
59. Niasari-Naslaji, A., Mosaferi, S., Bahmani, N., et al. "Effect of lactose extender with different levels of osmolality and pH on the viability of Bactrian camel (Camelus bactrianus) spermatozoa", Iran. J. Vet. Res., 7(4), pp. 14-22 (2006).
60. Mataram, A., Ismail, A.F., Yuliwati, E., et al. "Water treatment perfomance: Application of electrospun nanofibers", J. Teknol., 77(1), pp. 263-267 (2015).
61. Esmaeili, A. and Beni, A.A. "A novel fixed-bed reactor design incorporating an electrospun PVA/chitosan nanofiber membrane", J. Hazard. Mater., 280, pp. 788-796 (2014).
62. Islam, M.S., Rahaman, M.S., and Yeum, J.H. "Phosphine-functionalized electrospun poly (vinyl alcohol)/ silica nanofibers as highly effective adsorbent for removal of aqueous manganese and nickel ions", Colloids Surf. A Physicochem. Eng. Asp., 484, pp. 9- 18 (2015).
63. Aliabadi, M., Irani, M., Ismaeili, J., et al. "Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution", Chem. Eng. J., 220, pp. 237-243 (2013).
64. Karamipour, A., Parsi, P.K., Zahedi, P., et al. "Using Fe3O4-coated nanofibers based on cellulose acetate/chitosan for adsorption of Cr (VI), Ni (II) and phenol from aqueous solutions", Int. J. Biol. Macromol., 154, pp. 1132-1139 (2020).
65. Shafiee, M., Abedi, M.A., Abbasizadeh, S., et al. "Effect of zeolite hydroxyl active site distribution on adsorption of Pb (II) and Ni (II) pollutants from water system by polymeric nanofibers", Sep Sci Technol, 55(11), pp. 1994-2011 (2020).
66. Mokhtari, M. and Keshtkar, A.R. "Removal of Th (IV), Ni (II) and Fe (II) from aqueous solutions by a novel PAN-TiO2 nanofiber adsorbent modified with aminopropyltriethoxysilane", Res. Chem. Intermed., 42(5), pp. 4055-4076 (2016).
67. Mahmoud, A.S., Mohamed, N.Y., Mostafa, M.K., et al. "Effective chromium adsorption from aqueous solutions and tannery wastewater using bimetallic Fe/Cu nanoparticles: response surface methodology and artificial neural network", Air Soil Water Res., 14, 11786221211028162 (2021).
68. Ogunlade, T.M., Babaniyi, B.R., Afolabi, F.J., et al. "Physicochemical, heavy metals and microbiological assessment of wastewater in selected abattoirs in ekiti state, nigeria", J. Environ. Treat. Tech., 9(4), pp. 788- 795 (2021).
69. Lopez, E., Patioo, R., Vazquez-Sauceda, M.L., et al. "Water quality and ecological risk assessment of intermittent stream flow through mining and urban areas of San Marcos River sub-basin, Mexico", Environ. Nanotechnol. Monit. Manag., 14, 100369 (2020).
70. Jafari, S. and Mostafavi, S.A. "Investigation of  itrogen contamination of important subterranean water in the plain", Medbiotech J., 3(01), pp. 10-12 (2019).
71. Abbas, H., Abuzaid, A.S., Jahin, H., et al. "Assessing the quality of untraditional water sources for irrigation purposes in Al-Qalubiya Governorate", Egypt. J. Soil Sci., 60(2), pp. 157-166 (2020).
72. Bichai, F., Polo-Lopez, M.I., and Ibanez, P.F. "Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation", Water Res., 46(18), pp. 6040-6050 (2012).
73. Aneyo, I.A., Doherty, F.V., Adebesin, O.A., et al. "Biodegradation of pollutants in wastewater from pharmaceutical, textile and local dye effluent in Lagos, Nigeria", J. Health Pollut., 6(12), pp. 34-42 (2016). 
Volume 30, Issue 6
Transactions on Chemistry and Chemical Engineering (C)
November and December 2023
Pages 2056-2069
  • Receive Date: 05 August 2021
  • Revise Date: 18 August 2022
  • Accept Date: 24 October 2022