Theoretical study of two-dimensional unsteady Maxwell fluid flow over a vertical Riga plate under radiation effects

Document Type : Article


1 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan

2 Department of Mathematics, Riphah International University, Faisalabad Campus, Faisalabad, 38000 Pakistan


The heat and mass transfer mechanism has gained importance in technical, industrial, and engineering processes due to the application of thermal radiation in nanomaterials with improved thermal properties. The nanomaterials with improved thermal characteristics can be utilized in the formulation of energy to expand the industrial growth of countries. The effects of thermal radiation on the rate-type fluid passing through a Riga plate are examined in this article. The influence of thermophoresis and Brownian motion also have significant importance. The mathematical explanation of the problem is elaborated with the help of partial differential equations. The coupled nonlinear form of ordinary differential equations is achieved via the appropriate methodology of similarity variables. Utilizing suitable MATLAB software, we have achieved numerical solutions for simplified nonlinear equations. The physical parameters have exceptional impacts on the behavior of velocity, temperature, and concentration fields which are explained with the help of graphs. From this study, it is concluded that the Deborah number has an increasing effect on the pattern of fluid velocity. The rising values of the Prandtl number decline the temperature profile while the higher values of the radiation parameter escalate the temperature profile.


1. Khan, M.I., Waqas, M., Hayat, T., et al. "Behavior of stratification phenomenon in flow of Maxwell nanomaterial with motile gyrotactic microorganisms in the presence of magnetic field", Int. J. Mech. Sci., 131, pp. 426-434 (2017).
2. Zheng, L., Zhao, F., and Zhang, X. "Exact solutions for generalized Maxwell fuid flow due to oscillatory and constantly accelerating plate", Nonlinear Anal. Real World Appl., 11(5), pp. 3744-3751 (2010).
3. Khan, M.I., Khan, M.I., Waqas, M., et al. "Chemically reactive flow of Maxwell liquid due to variable thicked surface", Int. Commun. Heat Mass Transf., 86, pp. 231-238 (2017).
4. Abbas, Z., Sajid, M., and Hayat, T. "MHD boundarylayer flow of an upper-convected Maxwell fluid in a porous channel", Theor Comput Fluid Dyn, 20(4), pp. 229-238 (2006).
5. Fetecau, C., Athar, M., and Fetecau, C. "Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate", Comput. Math. Appl., 57(4), pp. 596-603 (2009).
6. Fetecau, C. and Fetecau, C. "A new exact solution for the flow of a Maxwell fluid past an infinite plate", Int. J. Non-Linear Mech., 38(3), pp. 423-427 (2003).
7. Hayat, T. and Qasim, M. "Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis", Int. J. Heat Mass Transf., 53(21-22), pp. 4780-4788 (2010).
8. Jamil, M. and Fetecau, C. "Helical flows of Maxwell fluid between coaxial cylinders with given shear stresses on the boundary", Nonlinear Anal. Real World Appl., 11(5), pp. 4302-4311 (2010).
9. Wang, Y. and Hayat, T. "Fluctuating flow of a Maxwell fluid past a porous plate with variable suction", Nonlinear Anal. Real World Appl., 9(4), pp. 1269-1282 (2008).
10. Nadeem, S., Haq, R.U., and Khan, Z.H. "Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles", J. Taiwan Inst Chem Eng, 45(1), pp. 121-126 (2014).
11. Oke, A.S. and Mutuku, W.N. "Significance of viscous dissipation on MHD Eyring-Powell flow past a convectively heated stretching sheet", Pramana, 95(4), pp. 1-7 (2021).
12. Oke, A.S. "Coriolis effects on MHD  flow of MEP fluid over a non-uniform surface in the presence of thermal radiation", Int. Commun. Heat Mass Transf., 129, 105695 (2021).
13. Oke, A.S., Animasaun, I.L., Mutuku, W.N., et al. "Significance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surface", Chinese J. Phys., 71, pp. 716-727 (2021).
14. Ouru, J.O., Mutuku, W.N., and Oke, A.S. "Buoyancyinduced MHD stagnation point flow of Williamson fluid with thermal radiation", J. Eng. Res. Reports., 11(4), pp. 9-18 (2020).
15. Oyem, A.O., Mutuku, W.N., and Oke, A.S. "Variability effects on magnetohydrodynamic for Blasius and Sakiadis flows in the presence of Dufour and Soret about a  at plate", Engineering Reports, 2(10), e12249 (2020).
16. Sadeghy, K., Najafi, A.H., and Saffaripour, M. "Sakiadis  flow of an upper-convected maxwell fluid", Int. J. Non-Linear Mech., 40, pp. 1220-1228 (2015).
17. Hayat, T., Ahmad, S., Khan, M.I., et al. "Simulation of ferromagnetic nanomaterial  flow of Maxwell  fluid", Results Phys., 8, pp. 34-40 (2018).
18. Hayat, T., Khan, M.I., Tamoor, M., et al. "Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface", Results Phys., 7, pp. 1824-1827 (2017).
19. Khan, M.I. and Alzahrani, F. "Binary chemical reaction with activation energy in dissipative flow of non-Newtonian nanomaterial", J. Theor Comput Chem, 19(03), p. 2040006 (2020).
20. Khan, M.I., Alzahrani, F., and Hobiny, A. "Simulation and modeling of second order velocity slip flow of micropolar ferro fluid with Darcy-Forchheimer porous medium", J. Mater. Res. Technol., 9(4), pp. 7335-7340 (2020).
21. Abel, M.S., Tawade, J.V., and Shinde, J.N. "The effects of MHD  flow and heat transfer for the UCM fluid over a stretching surface in presence of thermal radiation", Adv. Math. Phys., 2012, pp. 1-21, Article ID 702681 (2012).
22. Mukhopadhyay, S., Ranjan De, P., and Layek, G.C. "Heat transfer characteristics for the Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation", J. Appl. Mech. Tech. Phys., 54(3), pp. 385-396 (2013).
23. Zheng, L., Li, C., Zhang, X., et al. "Exact solutions for the unsteady rotating flows of a generalized Maxwell fluid with oscillating pressure gradient between coaxial cylinders", Comput. Math. Appl., 62(3), pp. 1105-1115 (2011).
24. Hafeez, A., Yasir, M., Khan, M., et al. "Buoyancy effect on the chemically reactive  flow of Cross nanofluid over a shrinking surface: Dual solution", Int. Commun. Heat Mass Transf., 126, 105438 (2021).
25. Yang, D., Yasir, M., and Hamid, A. "Thermal transport analysis in stagnation-point flow of Casson nanofluid over a shrinking surface with viscous dissipation", Waves in Random and Complex Media, pp. 1-15 (2021).
26. Khan, M., Ahmad, L., Yasir, M., et al. "Numerical analysis in thermally radiative stagnation point flow of Cross nanofluid due to shrinking surface: dual solutions", Appl. Nanosci., pp. 1-12 (2021).
27. Hayat, T., Tamoor, M., Khan, M.I., et al. "Numerical simulation for nonlinear radiative flow by convective cylinder", Results Phys., 6, pp. 1031-1035 (2016).
28. Qayyum, S., Khan, M.I., Hayat, T., et al. "Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk", Physica B Condens., 534, pp. 173-183 (2018).
29. Waqas, M., Khan, M.I., Hayat, T., et al. "Transportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditions", Chaos Solitons Fractals, 130, 109415 (2020).
30. Ijaz Khan, M., Alsaedi, A., Hayat, T., et al. "Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation", Comput Methods Programs Biomed, 179, p. 104973 (2019).
31. Gireesha, B.J., Sowmya, G., Khan, M.I., et al. "Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection", Comput Methods Programs Biomed, 185, 105166 (2020).
32. Hayat, T., Aslam, N., Khan, M.I., et al. "Physical significance of heat generation/absorption and Soret effects on peristalsis flow of pseudoplastic fluid in an inclined channel", J. Mol. Liq., 275, pp. 599-615 (2019).
33. Gailitis, A. "On the possibility to reduce the hydrodynamic drag of a plate in an electrolyte", Appl. Magnetohydrodynamics, Rep. Inst. Phys. Riga, 13, pp. 143-146 (1961).
34. Pantokratoras, A. "The Blasius and Sakiadis flow along a Riga-plate", Prog. Comput. Fluid Dyn., 11(5), pp. 329-333 (2011).
35. Magyari, E. and Pantokratoras, A. "Aiding and opposing mixed convection flows over the Riga-plate", Commun. Nonlinear Sci. Numer. Simul., 16(8), pp. 3158-3167 (2011).
36. Ahmad, A., Asghar, S., and Afzal, S. "Flow of nanofluid past a Riga plate", J. Magn. Magn. Mater., 402, pp. 44-48 (2016).
37. Nadeem, S., Amin, A., Abbas, N., et al. "Effects of heat and mass transfer on stagnation point flow of micropolar Maxwell fluid over Riga plate", Sci. Iran., 28(6), pp. 3753-3766 (2021).
38. Hafeez, M.B., Khan, M.S., Qureshi, I.H., et al. "Particle rotation effects in Cosserat-Maxwell boundary layer flow with non-Fourier heat transfer using a new novel approach", Sci. Iran., 28(3), pp. 1223-1235 (2021).
39. Fetecau, C., Vieru, D., Abbas, T., et al. "Analytical solutions of upper convected Maxwell fluid with exponential dependence of viscosity under the influence of pressure", Mathematics, 9(4), p. 334 (2021).
40. Muhammad, T., Waqas, H., Khan, S.A., et al. "Significance of nonlinear thermal radiation in 3D Eyring-Powell nanofluid flow with Arrhenius activation energy", J. Therm. Anal. Calorim., 143(2), pp. 929- 944 (2021).
41. Waqas, H., Imran, M., Muhammad, T., et al. "On bioconvection thermal radiation in Darcy-Forchheimer flow of nanofluid with gyrotactic motile microorganism under Wu's slip over stretching cylinder/plate", Int. J. Numer. Methods Heat Fluid Flow, 31, pp. 1520-1546 (2020).
42. Zhang, L., Bhatti, M.M., Ellahi, R., et al. "Oxytactic microorganisms and thermo-bioconvection nanofluid flow over a porous Riga plate with Darcy-Brinkman-Forchheimer medium", J. Non-Equilib. Thermodyn., 45(3), pp. 257-268 (2020).
43. Subbarayudu, K., Suneetha, S., Bala Anki Reddy, P., et al. "Framing the activation energy and binary chemical reaction on CNT's with Cattaneo-hristov heat diffusion on Maxwell nanofluid in the presence of nonlinear thermal radiation", Arab. J. Sci. Eng., 44(12), pp. 10313-10325 (2019).
44. Ramesh, K., Khan, S.U., Jameel, M., et al. "Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy", Surfaces and Interfaces, 21, 100749 (2020).
45. Ramesh, G.K., Roopa, G.S., Gireesha, B.J., et al. "An electro-magneto-hydrodynamic flow Maxwell nanoliquid past a Riga plate: a numerical study", J. Braz. Soc. Mech. Sci. Eng., 39(11), pp. 4547-4554 (2017).
46. Eckert, E.R.G., Sparrow, E.M., Goldstein, R.J., et al. "Heat transfer-A review of 1978 literature", Int. J. Heat Mass Transf., 22(11), pp. 1469-1499 (1979).
47. Raptis A. "Radiation and free convection flow through a porous medium", Int. J. Heat Mass Transf., 25(2), pp. 289-95 (1998).
48. Loganathan, K., Alessa, N., Namgyel, N., et al. "MHD flow of thermally radiative Maxwell fluid past a heated stretching sheet with Cattaneo-Christov dual diffusion", J. Math., 2021, Article ID 5562667, pp. 1- 10 (2021).
49. Nadeem, S., Haq, R.U., and Khan, Z.H. "Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles", J. Taiwan Inst Chem Eng, 45(1), pp. 121-126 (2014).