Design and analysis of metamaterial integrated modified golden spiral antenna for Terahertz applications

Document Type : Article

Authors

1 Department of Computer Science & Engineering, Amity School of Engineering Technology, Amity University Uttar-Pradesh, Noida, India

2 Amity School of Applied Science, Amity University Rajasthan, Jaipur, India

3 Department of Electronics and Communication Engineering, Manipal University Jaipur, India

Abstract

The article presents a high gain metamaterial integrated modified golden spiral antenna for THz (Terahertz) applications. THz is well suited to the development of a next-generation wireless telecommunication system capable of firing at a tremendous rate of 100 Gb/sec. The Golden spiral patch antenna is integrated with six decagon metamaterial (MTM) unit cells in the ground plane. The (MTM) unit cell is designed by two decagon SRRs (Split Ring Resonator).The proposed antenna has the dimensions of 100 x 100µm2 with metamaterial decagon rings on the ground.The metamaterial integrated antenna resonates at 2.80THz, 3.15THz, and 3.46 THz with impedance bandwidths of 2.77 THz -2.88THz and 3.00-3.70THz.

Keywords


References:
1. Song, H.-J. and Nagatsuma, T. "Present and future of terahertz communications", IEEE Transactions on Terahertz Science and Technology, 1(1), pp. 256-263 (2011). DOI: 10.1109/TTHZ.2011.2159552.
2. Hwu, S.U., deSilv, K.B., and Jih, C.T. "Terahertz (THz) wireless systems for space applications", in IEEE Sensors Applications Symposium Proceedings, Galveston, TX, USA (2013). DOI: 10.1109/SAS.2013.6493580.
3. Akyildiz, I.F., Jornet, J.M., and Hana, C. "Terahertz band: Next frontier for wireless communications", Physical Communication, 12, pp. 16-32 (2014). https://doi.org/10.1016/j.phycom.2014.01.006.
4. Keshwala, U., Ray, K., and Rawat, S. "Ultra-wideband mushroom shaped half-sinusoidal antenna for THz applications", Optik, 228, pp. 166-156 (2021). https://doi.org/10.1016/j.ijleo.2020.166156.
5. Keshwala, U., Rawat, S., and Ray, K. "Design and analysis of DNA shaped antenna for terahertz and sub-terahertz applications", Optik, 232, pp. 166-512 (2021). https://doi.org/10.1016/j.ijleo.2021.166512.
6. Mark, R. Rajak, N., Mandal, K., et al. "Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application", International Journal of Electronics and Communications-AEU, 100, pp. 144-152 (2019). https://doi.org/10.1016/j.aeue.2019.01.011.
7. Chen, X., Grzegorczyk, T.M., Wu, B.-I., et al. "Robust method to retrieve the constitutive effective parameters of metamaterials", Physics Review, 4 (2004). DOI: 10.1103/PhysRevE.70.016608.
8. Devapriya, A.T. and Robinson, S. "Investigation on metamaterial antenna for Terahertz applications", Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 18(3), pp. 377-389 (2019). DOI: 10.1590/2179-10742019v18i31577.
9. Sirmaci, Y.D., Akin, C.K., and Sabah, C. "Fishnet based metamaterial loaded THz patch antenna", Optical and Quantum Electronics, 48(2), pp. 1-10 (2016). DOI: 10.1007/s11082-016-0449-6.
10. Ghosh, J. and Mitra, D. "Mutual coupling reduction in planar antenna by graphene metasurface for THz application", Journal of Electromagnetic Waves and Applications, 31(18), pp. 2036-2045 (2017). https://doi.org/10.1080/09205071.2016.1277959.
11. Koutsoupidou, M., Karanasiou, I.S., and Uzunoglu, N. "Substrate constructed by an array of split ring resonators for a THz planar antenna", Journal of Computational Electronics, 13, pp. 593-598 (2014). DOI: 10.1007/s10825-014-0575-y.
12. Labidi, M. and Choubani, F. "Performances enhancement of metamaterial loop antenna for terahertz applications", Optical Materials, 82, pp. 116-122 (2018). https://doi.org/10.1016/j.optmat.2018.05.050.
13. Green, C.D. "All that glitters: A review of psychological research on the aesthetics of the golden section", Journal of Perception, 24, pp. 937-968 (1995). https://doi.org/10.1068/p240937.
14. Numan, A.B. and Sharawi, M.S. "Extraction of material parameters for xetraction of material parameters for", IEEE Antennas and Propagation Magazine, 55(5), pp. 202-211 (2013). DOI: 10.1109/MAP.2013.6735515.
15. Prince, P. and Kalra and Sidhu, E. "Rectangular TeraHertz microstrip patch antenna design for ribo  avin detection applications", in 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), Chirala, Andhra Pradesh, India, pp. 303-306 (2017). DOI: 10.1109/ICBDACI.2017.8070853.
16. Keshavarz, A. and Vafapour, Z. "Sensing avian influenza viruses using terahertz metamaterial reflector", IEEE Sensors Journal, 19(13), pp. 5161-5166 (2019). DOI: 10.1109/JSEN.2019.2903731.
17. Liu, Y. and Sumpter, D.J.T. "Is the golden ratio a universal constant for self-replication?", PLOS ONE, 13(7), e0200601 (2018). https://doi.org/10.1371/journal.pone.0200601.
18. Akhtaruzzaman, M. and Shafie, A.A. "Geometrical substantiation of phi, the golden ratio and the baroque of nature, architecture, design and engineering", International Journal of Arts, 1(1) pp. 1-22 (2011). DOI: 10.5923/j.arts.20110101.01.
19. Keshwala, U. Rawat, S., and Ray, K. "Nature inspired 21 branches sneezewort/Achillea ptarmica plant growth pattern-shaped antenna for Ku-band applications", International Journal of RF and Microwave Computer-Aided Engineering, 30(8), pp. 1658-1661(2020).https://doi.org/10.1002/mmce.22240.
Volume 31, Issue 14
Transactions on Computer Science & Engineering and Electrical Engineering (D)
July and August 2024
Pages 1197-1205
  • Receive Date: 22 August 2021
  • Revise Date: 07 April 2022
  • Accept Date: 01 October 2022