Fe3O4@nano-cellulose/Ti(IV): An efficient and natural-based magnetic nano-catalyst for the synthesis of functionalized pyrimido [4,5-b] quinolines in aqueous media

Document Type : Article


1 Department of Chemistry, College of Science, Yazd University, Yazd, P.O. Box 89195-741, Iran

2 Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R. Iran


A simple, efficient, and high yielding one-pot protocol for the synthesis of pyrimido [4,5-b] quinoline derivatives has been developed. Pyrimido [4,5-b] quinolines were synthesized by three component reaction of 6-amino-2-(methylthio)pyrimidin-4(3H)-one, dimedone and various substituted aldehydes using Fe3O4@NCs/Ti(IV) as a magnetic natural-based catalyst in water at 70 °C. Several advantages of this protocol are good yields, short reaction times, easy work-up, recyclability and the environmentally benign of the catalyst. 6-Amino-2-(methylthio)pyrimidin-4(3H)-one as an important substrate was synthesized, purified, identified and then applied for the synthesis of pyrimido [4,5-b] quinolines. The structures of the products were confirmed by IR, 1H NMR and 13C NMR spectra.


1. Hickey, R.J. and Pelling, A.E. "Cellulose biomaterials for tissue engineering", Front. Bioeng. Biotechnol., 7, p. 45 (2019).
2. Trache, D., Tarchoun, A.F., Derradji, M., et al. "Nanocellulose: from fundamentals to advanced applications", Front. Chem., 8, p. 392 (2020).
3. Song, K., Zhu, X., Zhu, W., et al. "Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass", Bioresour. Bioprocess., 6, p. 45 (2019).
4. Gul1, S., Khan, S.B., Rehman, I.U., et al. "Comprehensive review of magnetic nanomaterials modern day theranostics", Front. Mater, 6, p. 179 (2019).
5. Shifrina, Z.B. and Bronstein, L.M. "Magnetically recoverable catalysts: beyond magnetic separation", Front. Chem., 6, p. 298 (2018).
6. Movassagh, B., Takallou, A., and Mobaraki, A. "Magnetic nanoparticle-supported Pd(II)-cryptand 22 complex: An efficient and reusable heterogeneous precatalyst in the Suzuki-Miyaura coupling and the formation of aryl-sulfur bonds", J. Mol. Catal. AChem., 401, pp. 55-65 (2015).
7. Zhang, Q., Xiaoyuan Yang, X., and Guan, J. "Applications of magnetic nanomaterials in heterogeneous catalysis", ACS Appl. Nano Mater., 2, pp. 4681-4697 (2019).
8. Lu, Y., Lu, X., Mayers, B.T., et al. "Synthesis and characterization of magnetic Co nanoparticles: A comparison study of three diffierent capping surfactants", J. Solid State Chem., 181, pp. 1530-1538 (2008).
9. El Harrak, A., Carrot, G., Oberdisse, J., et al. "Surface-atom transfer radical polymerization from silica nanoparticles with controlled colloidal stability", Macromolecules, 37, pp. 6376-6384 (2004).
10. Tartaj, P. and Serna, C.J. "Synthesis of monodisperse superparamagnetic fe/silica nanospherical composites", J. Am. Chem. Soc., 125, pp. 15754-15755(2003).
11. Azad, S. and Mirjalili, B.F. "Fe3O4 @nano-cellulose/ TiCl: a bio-based and magnetically recoverable nanocatalyst for the synthesis of pyrimido[2,1-b]benzothiazole derivatives", RSC. Adv., 6, pp. 96928-96934 (2016).
12. Safajoo, N., Mirjalili, B.F., and Bamoniri, A. "Fe3O4@nano-cellulose/Cu (II): a bio-based and magnetically recoverable nano-catalyst for the synthesis of 4H-pyrimido[2,1-b]benzothiazole derivatives", RSC. Adv., 9, pp. 1278-1283 (2019).
13. Safari, J. and Javadian, L. "Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives", RSC. Adv., 4, pp. 48973-48979 (2014).
14. Cedric, S.G., Felipe, V.R., Kamilla, R.R., et al. "Multicomponent reactions for the synthesis of bioactive compounds: a review", Curr. Org. Synth., 16, pp. 855- 899 (2019).
15. Huang, Zh., Hu, Y., Zhou, Y., et al. "Efficient one-pot three component synthesis of fused pyridine derivatives in ionic liquid", ACS Comb. Sci., 13, pp. 45-49 (2011).
16. Tu, S., Cao, L., Zhang, Y., et al. "An efficient synthesis of pyrido[2,3-d]pyrimidine derivatives and related compounds under ultrasound irradiation without catalyst", Ultrason. Sonochem., 15, pp. 217-221 (2008).
17. Edjlali, L., Hosseinzdeh Khanamiri, R., and Abolhasani, J. "Fe3O4 nano-particles supported on cellulose as an efficient catalyst for the synthesis of pyrimido[4,5-b]quinolines in water", Monatsh Chem., 146, pp. 1339-1342 (2015).
18. Mohsenimehr, M., Mamaghani, M., Shirini, F., et al. "One-pot synthesis of novel pyrimido[4,5-b]quinolines and pyrido[2,3-d:6,5d]dipyrimidines using encapsulated- -Fe2O3 nanoparticles", J. Chem. Sci., 127, pp. 1895-1904 (2015).
19. Tenser, R.B., Gaydos, A., and Hay, K.A. "Inhibition of herpes simplex virus reactivation by dipyridamole. Antimicrob", Agents. Chemother., 45, pp. 3657-3659 (2001).
20. Grivsky, E.M., Lee, S., Sigel, C.W., et al. "Synthesis and antitumor activity of 2,4-diamino-6-(2,5- dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine", J. Med. Chem., 23, pp. 327-329 (1980).
21. Rosowsky, A., Mota, C.E., and Queener, S.F. "Synthesis and antifolate activity of 2,4-diamino-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine analogues of trimetrexate and piritrexim", J. Heterocycl. Chem., 32, pp. 335-340 (1995).
22. Quintela, J.M., Peinador, C., Botana, L., et al. "Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]-pyrimidines", Bioorg. Med. Chem., 5, pp. 1543-1553 (1997).
23. El-Gazzar, A.B.A. and Hafez, H.N. "Synthesis of 4-substituted pyrido[2,3-d]pyrimidin-4(1H)-one as analgesic and anti-inflammatory agents", Bioorg. Med. Chem. Lett., 19, pp. 3392-3397 (2009).
24. Oakes, V. and Rydon, H.N. "Polyazanaphthalenes. Part IV. Further derivatives of 1:3:5- and 1:3:8-triazanaph-thalene", J. Chem. Soc., pp. 4433-4438 (1956).
25. De la Cruz, J.P., Carrasco, T., Ortega, G., and Sanchez De la Cuesta, F. "Inhibition of ferrousinduced lipid peroxidation by pyrimido-pyrimidine derivatives in human liver membranes", Lipid, 27, pp. 192-194 (1992).
26. Awoutters, F., Vermeire, J., Smeyers, F., et al. "Oral antiallergic activity in ascaris hypersensitive dogs: a study of known antihistamines and of the new compounds ramastine (R 57 959) and levocabastine (R 50547)", Drug. Dev. Res., 8, pp. 95-102 (1986).
27. Smith, R.L., Barette, R.J., and Sanders-Bush, E. "Neurochemical and behavioral evidence that quipazine-ketanserin discrimination is mediated by serotonin2A receptor", J. Pharmacol. Exp. Ther., 275, pp. 1050-1057 (1995).
28. Youssif, S., El-Bahaie, S., and Nabih, E. "A facile one-pot synthesis of pyrido[2,3-d]-pyrimidines and pyrido[2,3-d:6,5-d0]dipyrimidines", J. Chem. Research, (S), pp. 112-113 (1999).
29. Piper, J.R., McCaleb, G.S., Montgomery, J.A., et al. "Syntheses and antifolate activity of 5-methyl-5-deaza analogues of aminopterin, methotrexate, folic acid, and n'o-methylfolic acid", J. Med. Chem., 29, pp. 1080- 1087 (1986).
30. Heber, D., Heers, C., and Ravens, U. "Positive inotropic activity of 5-amino-6-cyano-1,3-dimethyl- 1,2,3,4-tetrahydropyrido[2,3-d]pyrim idine-2,4-dione in cardiac muscle from guinea-pig and man. Part 6: Compounds with positive inotropic activity", Die Pharmazie., 48, pp. 537-541 (1993).
31. Quiroga, J., Hormaza, A., Insuasty, B., et al. "Synthesis of pyrimido[4,5-b]quinolines in the reaction of 6-minopyrimidines with dimedone and benzaldehydes", J. Heterocyclic Chem., 35, pp. 231-233 (1998).
32. Mohammadi, K., Shirini, F., and Yahyazadeh, A. "1,3-disulfonic acid imidazolium hydrogen sulfate: a reusable and efficient ionic liquid for the one-pot multi-component synthesis of pyrimido[4,5-b]-quinoline derivatives", RSC Adv, 5, pp. 23586-23590 (2015).
33. Tabatabaeian, K., Fallah Shojaei, A., Shirini, F., et al., "A green multicomponent synthesis of bioactive pyrimido[4,5-b]quinolone derivatives as antibacterial agents in water catalyzed by RuCl3.xH2O", Chin. Chem. Lett., 25, pp. 308-312 (2014).
34. El-Gazzar, A.B.A., Hafez, H.N., and Nawwar, G.A.M. "New acyclic nucleosides analogues as potential analgesic, anti-inflammatory, anti-oxidant and antimicrobial derived from pyrimido[4,5-b]quinolones", Eur. J. Med. Chem., 44, pp. 1427-1436 (2009).
35. Abdel Naby, H.A., Mekheimer, R.A., Abd-Elhameed, A.M., et al. "Convenient one-pot synthesis of pyrimido[4,5-b]quinolines as 5-deaza non-classical antifolate inhibitors", J. Chem. Res. (S), pp. 678-679 (1999).
36. Mirjalili, B.F., Bamoniri, A., and Mirhoseini, M.A. "Nano-SnCl4. SiO2: An efficient catalyst for onepot synthesis of 2,4,5-tri substituted imidazoles under solvent-free conditions", Scientia Iranica, 20, pp. 587- 591 (2013).
37. Mirjalili, B.F., Bamoniri, A., Zolfigol, M.A., et al. "Solvent-free preparation of 1, 1-diacetates from aldehydes mediated by zirconium hydrogen sulfate at room temperature", J. Chin. Chem. Soc., 53, pp. 955-959 (2006).
38. Mirjalili, B.F., Bamoniri, A., and Zamani, L. "Nano-TiCl4/SiO2: An efficient and reusable catalyst for the synthesis of tetrahydrobenzo [a] xanthenes-11-ones", Lett. Org. Chem., 9, pp. 338-343 (2012).
39. Mirjalili, B.F., Hashemi, M., Sadeghi, B., et al. "SnCl4/SiO2: An efficient heterogeneous alternative for one-pot synthesis of fi-acetamidoketones", J. Chin. Chem. Soc., 56, pp. 386-391 (2009).
40. Babaei, E. and Mirjalili, B.F. "One pot aqueous media synthesis of 1,3-oxazine derivatives catalyzed by reusable nano-Al2O3/BF3/Fe3O4 at room temperature", Polycycl. Arom. Compd, 41, pp. 518-525 (2021).
41. Mehravar, M., Mirjalili, B.F., Babaei, E., et al. "Efficient solvent free synthesis of tetrahydrobenzo [a]xanthene-11-one derivatives using nano-AlPO4/Ti (IV) as a green, heterogeneous and reusable catalyst", Inorg. Nano-Metal Chem., 52, pp. 241-252 (2022).
42. Dehghani Tafti, A., Mirjalili, B.F., Bamoniri, A., et al. "Rapid four-component synthesis of dihydropyrano [2,3-c]pyrazoles using nano-eggshell/Ti(IV) as a highly co mpatible natural based catalyst", BMC Chem. (2022). Inpress.