References:
1.Kalman, R.E. “A new approach to linear filtering andprediction problems”, J. Basic Eng., 82(1), pp. 35-45(1960). http://doi.org/10.1115/1.3662552.
2.Dorostgan, M. and Taban, M.R. “Adaptive radar signaldetection in autoregressive interference using Kalman-based filters”, Sci. Iran., 28(6), pp. 3352-3362 (2019).http://doi.org/10.24200/sci.2019.50136.1534.
3.Bayat, S., Pishkenari, H.N., and Salarieh, H.“Observation of stage position in a two-axis nano-positioner using hybrid Kalman filter”, Sci. Iran., Trans.B, Mech. Eng., 28(5), pp. 2628-2638 (2021).http://doi.org/10.24200/sci.2021.54441.3752.
4.Sheikhbahaei, R., Vossughi, G., and Alasty, A. “Optimaltuner selection using Kalman filter for a real-timemodular gas turbine model”, Sci. Iran., 27(2), pp. 806-818 (2020). http://doi.org/10.24200/sci.2019.5341.1218.
5.Mohamed, A.H. and Schwarz, K.P. “Adaptive KalmanFiltering for INS/GPS”, J. Geod., 73(4), pp. 193-203(1999). http://doi.org/10.1007/s001900050236.
6.Mehra, R. “Approaches to adaptive filtering”, IEEETrans. Automat. Contr., 17(5), pp. 693-698 (1972).http://doi.org/10.1109/TAC.1972.1100100.
7.Sage, A.P. and Husa, G.W. “Adaptive filtering withunknown prior statistics”, Jt. Autom. Control Conf., 7,pp. 760-769 (1969).
8.Myers, K. and Tapley, B.D. “Adaptive sequentialestimation with unknown noise statistics”, IEEE Trans.Automat. Contr., 21(4), pp. 520-523 (1976).http://doi.org/10.1109/TAC.1976.1101260.
9.Maybeck, P.S. “Stochastic models, estimation, andcontrol”, Academic press (1982).
10.Bar-Shalom, Y., Li, X.R., and Kirubarajan, T. Estimationwith Applications to Tracking and Navigation: TheoryAlgorithms and Software, John Wiley and Sons (2004).
11.Sarkka, S. and Nummenmaa, A. “Recursive noiseadaptive Kalman filtering by variational Bayesianapproximations”, IEEE Trans. Automat. Contr., 54(3), pp. 596-600 (2009). http://doi.org/10.1109/TAC.2008.2008348.
12.Ma, J., Lan, H., Wang, Z., et al. “Improved adaptiveKalman filter with unknown process noise covariance,” in2018 21st International Conference on InformationFusion (FUSION), pp. 1-5 (2018).http://doi.org/10.23919/ICIF.2018.8455394.
13.Huang, Y., Zhang, Y., Wu, et al. “A novel adaptiveKalman filter with inaccurate process and measurementnoise covariance matrices”, IEEE Trans. Automat. Contr.,63(2), pp. 594-601 (2018).http://doi.org/10.1109/TAC.2017.2730480.
14.Huang, Y., Zhang, Y., Li, N., et al. “A novel robustStudent’s t-based Kalman filter”, IEEE Trans. Aerosp.Electron. Syst., 53(3), pp. 1545-1554 (2017).http://doi.org/10.1109/TAES.2017.2651684.
15.Wang, X., Liang, Y., Pan, Q., et al. “Gaussian filter fornonlinear systems with one-step randomly delayedmeasurements”, Automatica, 49(4), pp. 976-986 (2013).http://doi.org/10.1016/j.automatica.2013.01.012.
16.Schenato, L. “Optimal estimation in networked controlsystems subject to random delay and packet drop”, IEEETrans. Automat. Contr., 53(5), pp. 1311-1317 (2008).http://doi.org/10.1109/TAC.2008.921012.
17.Shen ,B., Wang, Z., Shu ,H., et al. “H∞ filtering fornonlinear discrete-time stochastic systems with randomlyvarying sensor delays”, Automatica, 45(4), pp. 1032-1037(2009). http://doi.org/10.1016/j.automatica.2008.11.009.
18.Hermoso-Carazo, A. and Linares-Pérez, J. “Extended andunscented filtering algorithms using one-step randomlydelayed observations”, Appl. Math. Comput., 190(2), pp.1375-1393 (2007).http://doi.org/10.1016/j.amc.2007.02.016.
19. Paul, A. Kamwa, I and Joos, G. “Centralized dynamic stateestimation using a federation of extended Kalman filterswith intermittent PMU data from generator terminals”,IEEE Trans. Power Syst., 33(6), pp. 6109-6119 (2018).http://doi.org/10.1109/TPWRS.2018.2834365.
20. Ray, A, Liou, L.W. and Shen. J.H. “State estimation usingrandomly delayed measurements”, J. Dyn. Syst. Meas.Control, 115(1), pp. 19-26, (1993).http://doi.org/10.1115/1.2897399.
21. Xu, B., Wang, X., Zhang, J. et al. “Maximum correntropydelay Kalman filter for SINS/USBL integratednavigation”, ISA Trans., 117, pp. 274-287 (2021). http://doi.org/10.1016/j.isatra.2021.01.055.
22. Xu, B., Zhang. J., and Razzaqi, A. “A novel robust filterfor outliers and time-varying delay on an SINS/USBLintegrated navigation model,” Meas. Sci. Technol., 32(1),pp. 15903 (2020). http://doi.org/10.1088/1361-6501/abaae9.
23. Xu, B., Wang, X., Guo, Y., et al. “A novel adaptive filterfor cooperative localization under time-varying delay andnon-gaussian noise”, IEEE Trans. Instrum. Meas., 70, pp.1-15 (2021). http://doi.org/10.1109/TIM.2021.3119130.
24. Wang, Y., Liu, Y., Fujimoto, H., et al. “Vision-based lateralstate estimation for integrated control of automatedvehicles considering multirate and unevenly delayedmeasurements”, IEEE/ASME Trans. Mechatronics, 23(6),pp. 2619-2627 (2018).http://doi.org/10.1109/TMECH.2018.2870639.
25.Larsen, T.D., Andersen, N.A., Ravn, O., et al.“Incorporation of time delayed measurements in adiscrete-time Kalman filter”, In Proceedings of the IEEEConference on Decision and Control,4, pp. 3972–3977(1998). http://doi.org/10.1109/CDC.1998.761918.
26. Tiwari, R.K., Bhaumik, S., Date, P., et al. “Particle Filterfor Randomly Delayed Measurements with UnknownLatency Probability”, Sensors, 20(19), 5689 (2020). http://doi.org/10.3390/s20195689.
27. Hermoso-Carazo, A. and Linares-Pérez, J. “Unscentedfiltering algorithm using two-step randomly delayedobservations in nonlinear systems”, Appl. Math. Model.,33(9), pp. 3705–3717 (2009). http://doi.org/10.1016/j.apm.2008.12.008.
28.Jia, G., Zhang, Y., Bai, M., et al. “A novel robust Student’s t-based Gaussian approximate filter with one-steprandomly delayed measurements”, Signal Processing,171, 107496 (2020).http://doi.org/10.1016/j.sigpro.2020.107496.
29. Jiang, Z., Zhou, W., Chen, C., et al. “A novel robustKalman filter with adaptive estimation of the unknowntime-varying latency probability”, Signal Processing, 189,108290 (2021).http://doi.org/10.1016/j.sigpro.2021.108290.
30. Wang, Z., Huang, Y., Zhang, Y., et al. “An improvedKalman filter with adaptive estimate of latencyprobability”, IEEE Trans. Circuits Syst. II Express Briefs,67(10), pp. 2259-2263 (2020). http://doi.org/10.1109/TCSII.2019.2952090.