References:
1. Salimi, H., Zakipour, A., and Asadi, M. "A novel analytical approach for time-response shaping of the pi controller in field oriented control of the permanent magnet synchronous motors", Journal of Electrical and Computer Engineering Innovations (JECEI), 10(2), pp. 463-476 (2022). DOI: 10.22061/JECEI.2022.7913.470.
2. Niknafs, S., Shiri, A., and Bagheri, S. "Modeling and analysis of at double-sided linear permanent magnet synchronous generator by magnetic equivalent circuit", Journal of Electrical and Computer Engineering Innovations (JECEI), 10(1), pp. 17-24 (2022). DOI: 10.22061/JECEI.2022.7925.471.
3. Heidary, M., Naderi, P., and Shiri, A. "Modeling and analysis of a multi-segmented linear permanentmagnet synchronous machine using a parametric magnetic equivalent circuit", Electrical Engineering, 104(2), pp. 705-715 (2022). DOI: 10.1007/s00202-021- 01334-4.
4. Lv, G., Zhou, T., Zeng, D., et al. "Iflnuence of secondary constructions on transverse forces of linear induction motors in curve rails for urban rail transit", IEEE Transactions on Industrial Electronics, 66(6), pp. 4231-4239 (2018). DOI: 10.1109/TIE.2018.2835382.
5. Esfahanian, H. R., Hasanzadeh, S., Heydari, M., et al. "Design, optimization, and control of a linear tubular machine integrated with levitation and guidance for maglev applications", Scientia Iranica, 30(4), pp. 1330-1341 (2021). DOI: 10.24200/sci.2021.56791.4939.
6. Hamedani, P., Sadr, S., and Shoulaei, A. "Independent fuzzy logic control of two five-phase linear induction motors supplied from a single voltage source inverter", Journal of Electrical and Computer Engineering Innovations (JECEI), 10(1), pp. 195-208 (2022). DOI: 10.22061/JECEI.2022.7930.472.
7. Naderi, P., Heidary, M., and Vahedi, M. "Performance analysis of ladder-secondary-linear induction motor with two different secondary types using magnetic equivalent circuit", ISA Transactions, 103, pp. 355- 365 (2020). DOI: 10.1016/j.isatra.2020.03.010.
8. Faiz, J., Ebrahimi, B., and Sharifian, M. "Different faults and their diagnosis techniques in threephase squirrel-cage induction motorsa review", Electromagnetics, 26(7), pp. 543-569 (2006). DOI: 10.1080/02726340600904335.
9. Feng, Z., Chen, X., and Zuo, M. J. "Induction motor stator current am-fm model and demodulation analysis for planetary gearbox fault diagnosis", IEEE Transactions on Industrial Informatics, 15(4), pp. 2386-2394 (2018). DOI: 10.1109/TII.2018.2876197.
10. Sheikh-Ghalavand, B., Vaez-Zadeh, S., and Isfahani, A. H. "An improved magnetic equivalent circuit model for iron-core linear permanentmagnet synchronous motors", IEEE Transactions on Magnetics, 46(1), pp. 112-120 (2009). DOI: 10.1109/TMAG.2009.2027144.
11. Naderi, P. and Shiri, A. "Rotor/stator inter-turn short circuit fault detection for saturable wound-rotor induction machine by modified magnetic equivalent circuit approach", IEEE Transactions on Magnetics, 53(7), pp. 1-13 (2017). DOI: 10.1109/TMAG.2017.2684162.
12. Ali, M.Z., Shabbir, M.N.S.K., Liang, X., et al. "Machine learning-based fault diagnosis for single-and multi-faults in induction motors using measured stator currents and vibration signals", IEEE Transactions on Industry Applications, 55(3), pp. 2378-2391 (2019). DOI: 10.1109/TIA.2019.2891227.
13. Corral-Hernandez, J.A. and Antonino-Daviu, J.A. "Thorough validation of a rotor fault diagnosis methodology in laboratory and field soft-started induction motors", Chinese Journal of Electrical Engineering, 4(3), pp. 66-72 (2018). DOI: 10.23919/CJEE.2018.8687021.
14. Liang, X., Ali, M. Z., and Zhang, H. "Induction motors fault diagnosis using finite element method: A review", IEEE Transactions on Industry Applications, 56(2), pp. 1205-1217 (2019). DOI: 10.1109/TIA.2019.2954376.
15. Faiz, J., Ghasemi-Bijan, M., and Ebrahimi, B.M. "Modeling and diagnosing eccentricity fault using three-dimensional magnetic equivalent circuit model of three-phase squirrel-cage induction motor", Electric Power Components and Systems, 43(11), pp. 1246- 1256 (2015). DOI: 10.1080/15325008.2015.1048324.
16. Utsumi, T. and Yamaguchi, I. "Detection and location of inter-turn short circuit in linear induction motor", In 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED 2003., pp. 63-68, IEEE (2003). DOI: 10.1080/15325008.2015.1048324.
17. Haddad, R.Z., Lopez, C.A., Pons-Llinares, J., et al. "Outer race bearing fault detection in induction machines using stator current signals", In 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), pp. 801-808, IEEE (2015). DOI: 10.1109/INDIN.2015.7281854.
18. Bianchini, C., Immovilli, F., Cocconcelli, M., et al. "Fault detection of linear bearings in brushless ac linear motors by vibration analysis", IEEE Transactions on Industrial Electronics, 58(5), pp. 1684-1694 (2010). DOI: 10.1109/TIE.2010.2043034.
19. Nosrati, A. and Nazarzadeh, J. "Analysis of linear induction machines with internal fault by mec",COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 36(4), pp. 959-979 (2017). DOI: 10.1108/COMPEL-03-2016-0103.
20. Faiz, J., Ghods, M., and Tajdyni, A. "Dynamic air gap asymmetry fault detection in single-sided linear induction motors", IET Electric Power Applications, 14(4), pp. 605-613 (2019). DOI: 10.1049/iet-epa.2018.5741.
21. Chernyavska, I. and Vtek, O. "Analysis of air-gap eccentricity in inverter fed induction motor by means of motor current signature analysis and stray flux of motor", In 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), pp. 72-76, IEEE (2017). DOI: 10.1109/SDEMPED.2017.8081832.
22. Zhang, S., Wang, B., and Habetler, T.G. "Deep learning algorithms for bearing fault diagnostics-a review", In 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), pp. 257-263, IEEE (2019). DOI: 10.1109/SDEMPED.2019.8878821.
23. Topaloglu, I. "Deep learning based convolutional neural network structured new image classification approach for eye disease identification", Scientia Iranica, (2022). DOI: 10.24200/sci.2022.58969.5461.
24. Razavi-Far, R., Hallaji, E., Farajzadeh-Zanjani, M., et al. "Information fusion and semi-supervised deep learning scheme for diagnosing gear faults in induction machine systems", IEEE Transactions on Industrial Electronics, 66(8), pp. 6331-6342 (2018). DOI: 10.1109/TIE.2018.2835383.
25. Wang, S., Bao, J., Li, S., et al. "Research on interturn short circuit fault identification method of pmsm based on deep learning", In 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), pp. 1-4, IEEE (2019). DOI: 10.1109/ICEMS.2019.8922152.
26. Han, J.-H., Choi, D.-J., Park, S.-U., et al. "A study on fault classification system based on deep learning algorithm considering speed and load condition", In 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), pp. 1-4, IEEE (2019). DOI: 10.1109/ICEMS.2019.8922153.
27. Zhang, W., Hu, Y., Zeng, D., et al. "Motor bearing fault diagnosis based on deep learning", In 2019 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 8- 14, IEEE (2019). DOI: 10.1109/SNPD.2019.8935792.
28. Chen, Z., Li, C., and Sanchez, R.-V. "Gearbox fault identification and classification with convolutional neural networks", Shock and Vibration, 2015, pp. 1-10 (2015). DOI: 10.1155/2015/390134.
29. Rostami, M., Naderi, P., and Shiri, A. "Modelling and analysis of permanent magnet vernier machine using flexible magnetic equivalent circuit method", IET Science, Measurement and Technology, 16(3), pp. 160-170 (2022). DOI: 10.1049/smt2.12039.
30. Sharouni, S., Naderi, P., Hedayati, M., et al. "Performance analysis of a novel outer rotor flux-switching permanent magnet machine as motor/generator for vehicular and aircraft applications", IET Electric Power Applications, 15(2), pp. 243-254 (2021). DOI: 10.1049/elp2.12033.
31. Shiri, A. and Shoulaie, A. "Design optimization and analysis of single-sided linear induction motor, considering all phenomena", IEEE Transactions on Energy Conversion, 27(2), pp. 516-525 (2012). DOI: 10.1109/TEC.2011.2178422.
32. Paymozd, A., Saneie, H., and Nasiri-Gheidari, Z. "Analytical modelling of linear resolver considering longitudinal end effect", Scientific Journal of Applied Electromagnetics, 10(1), pp. 1-10 (2022). DOI: 10.29252/sjae.10.1.1.
33. Zare, F. and Nasiri-Gheidari, Z. "Improving the performance of helical motion resolver based on accurate modelling of longitudinal end effect", IET Electric Power Applications, 16(10), pp. 1212-1222 (2022). DOI: 10.1049/elp2.12123.
34. Pal, M. and Edwards, M.G. "Archives of computational methods in engineering: Numerical convergence and the maximum principle", Archives of Computational Methods in Engineering: State of the Art Reviews, 17(2), pp. 137-189 (2010). DOI: 10.1007/s11831-010-9041-4.