Experimental and numerical investigation of flow behaviors of some selected food supplements in modeled intestine

Document Type : Article

Authors

1 Department of Mechanical Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria

2 Department of Aeronautics and Astronautics, Faculty of Engineering and Technology, Kwara State University, Malete, Kwara State, Nigeria

Abstract

This study presents the flow of Hibiscus Sabdariffa Roselle (Sobo), Soymilk (Soya), and Pap (Ogi) through a modeled intestine. The study employed experimental and Computational Fluid Dynamics (CFD) techniques, while AUTODESK INVENTOR 2020 version was used to draw the 3-D computational model of the human intestine. ANSYS FLUENT 16.0 was utilized as a CFD solver. Analyses of the results show that fluid velocity, pressure, density, and viscosity significantly influence the flow behavior of nutrients in the intestinal walls. The density and viscosity of the investigated fluids are in the range of 800-1024 kg/m3 and 0.316-1.095 Pas, respectively, while the maximum and the minimum viscosity were observed with Ogi and Sobo, respectively. The highest drop in the velocity along the whole length of the intestinal model was noticed between 0.8 and 1.5 m, which corresponds to the pulsating section of the model. The maximum and minimum Reynolds numbers were recorded with Sobo and Ogi samples, respectively. For effective flow and to avoid complications when taking the food supplements, especially for someone under medication, a flow velocity of 0.005 m/s is recommended. The presence of villi in the intestinal wall augmented heat transfer.

Keywords


References:
1. Adegun, I.K., Ibrahim, I.B., and Adesoye, O.A. "Numerical simulation of laminar  flow of non-Newtonian fluids in a rhythmical non-permeable medium", An NNALS Fac. Eng. Hunedoara-Int. J. Eng., Tome XVII, pp. 175-180 (Feb. 1, 2019).
2. Burclaff, J., Bliton, R.J., Breau, K.A., et al. "A proximal-to-distal survey of healthy adult human small intestine and colon epithelium by single-cell transcriptomics", Cmgh., 13(5), pp. 1554-1589 (2022). DOI: 10.1016/j.jcmgh.2022.02.007.
3. Farooq, S., IjazKhan, M., Hayat, T., et al. "Theoretical investigation of peristalsis transport in the  flow of hyperbolic tangent fluid with slip effects and chemical reaction", J. Mol.  Liq., 285, pp. 314-322 (2019). DOI:10.1016/j.molliq.2019.04.051.
4. Adegun, I.K., Ibitoye, S.E., and Bala, A. "Effect of selected geometric parameters on natural convection in concentric square annulus", Aust. J. Mech. Eng., 20(4), pp. 1-12 (2020). DOI: 10.1080/14484846.2020.1784559.
5. Akram, J., Akbar, N.S., and Tripathi, D. "Electroosmosis augmented MHD peristaltic transport of SWCNTs suspension in aqueous media", J. Therm. Anal. Calorim., 147(3), pp. 2509-2526 (2022). DOI:10.1007/s10973-021-10562-3.
6. Norton, T. and Sun, D.W. "Computational  fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: A review", Trends Food Sci. Technol., 17(11), pp. 600-620 (2006). DOI: 10.1016/j.tifs.2006.05.004.
7. Lege, A.J. "Mathematical and numerical modelling of peristaltic  flow and absorption in the small intestine", PhD Thesis, Bath Univ. (2014).
8. Tripathi, D., Prakash, J., Gnaneswara Reddy, M., et al. "Numerical study of electroosmosisinduced alterations in peristaltic pumping of couple stress hybrid nano fluids through microchannel", Indian J. Phys., 95, pp. 2411-2421 (2020). https://doi.org/10.1007/s12648-020-01906-0.
9. Wright, J., Wulfert, F., Hort, J., et al. "Effect of preparation conditions on release of selected volatiles in tea headspace", J. Agric. Food Chem., 55, pp. 1445-1453 (2017).
10. Alokaily, S. "Modeling and simulation of the peristaltic flow of Newtonian and non-Newtonian fluids with application to the human body", PhD Thesis: Department of Mathematical Sciences Michigan Technological University (2017).
11. Olayemi, O.A., Al-Farhany, K., Ibitoye, S.E., et al. "Mixed convective heat transfer in a lid-driven concentric trapezoidal enclosure: numerical simulation", International Journal of Engineering Research in Africa, 60, pp. 43-62 (2022). https://doi.org/10.4028/pkybe41.
12. Arian, C.M., Imaoka, T., Yang, J., et al. "Gutsy science: In vitro systems of the human intestine to model oral drug disposition", Pharmacol. Ther., 230, 107962 (2022). DOI: 10.1016/j.pharmthera.2021.107962.
13. Hashimoto, Y., Michiba, K., Maeda, K., et al. "Quantitative prediction of pharmacokinetic properties of drugs in humans: Recent advance in vitro models to predict the impact of efflux transporters in the small intestine and blood-brain barrier", J.
Pharmacol. Sci., 148(1), pp. 142-151 (2022). DOI: 10.1016/j.jphs.2021.10.010.
14. Karthikeyan, J.S., Salvi, D., and Karwe, M.V.  "Modeling of fluid flow, carbohydrate digestion, and glucose absorption in human small intestine", J. Food Eng., 292, p. 110339 (2021). DOI: 10.1016/j.jfoodeng.2020.110339.
15. kram, J., Sher, N., and Tripathi, D. "Analysis of electroosmotic  flow of silver-water nano fluid regulated by peristalsis using two different approaches for nano fluid", J. Comput. Sci., 62, p. 101696 (2022). DOI: 10.1016/j.jocs.2022.101696.
16. Arrieta, J., Cartwright, J.H.E., Gouillart, E., et al. "Geometric mixing, peristalsis, and the geometric phase of the stomach", 10(7), pp. 1-17 (2015). DOI: 10.1371/journal.pone.0130735.
17. Ehsan, T., Anjum, H.J., and Asghar, S. "Peristaltic flows: A quantitative measure for the size of a bolus", Physica A: Statistical Mechanics and its Applications, 553(C), 124211 (2020). DOI: 10.1016/j.physa.2020.124211.
18. Chen, Y., Zhou, W., Roh, T. et al. "In vitro enteroidderived three-dimensional tissue model of human small intestinal epithelium with innate immune responses", PLoS One, 12(11), pp. 1-20 (2017).
19. Cortez, A.R., Poling, H.M., Brown, N.E., et al. "Transplantation of human intestinal organoids into the mouse mesentery: A more physiologic and anatomic engraftment site", Surgery, 164(4), pp. 643-650 (2018). DOI: 10.1016/j.surg.2018.04.048.
20. Imam, H., Sanmiguel, C., Larive, B., et al. "Study of intestinal flow by combined videofluoroscopy", Am. J. Physiol. Liver Physiol., 286, pp. 263-270 (2018).
21. Ellahi, R., Bhatti, M.M., and Vafai, K. "International journal of heat and mass transfer effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct", Int. J. Heat Mass Transf., 71, pp. 706-719 (2014). DOI: 10.1016/j.ijheatmasstransfer.2013.12.038.
22. Farooq, S., Hayat, T., Alsaedi, A., et al. "Mixed convection peristalsis of corban nanotubes with thermal radiation and entropy generation", J. Mol. Liq., 250, pp. 451-467 (Jan. 2018). DOI:10.1016/j.molliq.2017.11.179.
23. Nadeem, S., Ashiq, S., and Ali, M. "Williamson  fluid model for the peristaltic flow of chyme in small intestine", Mathematical Problems in Engineering, 2012, pp. 1-18 (2012). DOI: 10.1155/2012/479087.
24. Mernone, A.V. "A mathematical study of peristaltic transport of physiological fluids", PhD Thesis, Department of Applied Mathematics, Adelaide University (2000).
25. Levy, I., Reifen, R., Livny, O., et al. "Bcarotene bioavailability from differently processed carrot meals in human ileostomy volunteers", Eur. J. Nutr., 42, pp. 338-345 (2016).
26. Tripathi, D., Akbar, N.S., and Khan, Z.H. "Peristaltic transport of bi-viscosity  fluids through a curved tube: A mathematical model for intestinal  flow", J. Eng. Med., 230(9), pp. 817-828 (2016). DOI: 10.1177/0954411916658318.
27. Javed, M. and Naz, R. "Peristaltic  flow of a realistic fluid in a compliant channel", Physica A, p. 123895 (2020). DOI: 10.1016/j.physa.2019.123895.
28. Rabe, S., Linforth, R.S.T., Krings, U., et al. "Volatile release from liquids. A comparison of in vivo Apci-Ms, in-mouth headspace trapping and in vitro mouth model data", Chem. Senses Flavor, 29, pp. 163-173 (2014).
29. Schulte, L., Hohwieler, M., Muller, M., et al. "Intestinal organoids as a novel complementary model to dissect inflammatory bowel disease", Stem Cells International, 2019, pp. 1-15 (2019). https://doi.org/10.1155/2019/8010645.
30. Kamaltdinov, M., Trusov, P., and Zaitseva, N. "A multiphase  flow in the an troduodenum: some results of the mathematical modeling and computational simulation", MATEC Web of Conferences, 145, p. 04002 (2018). https://doi.org/10.1051/matecconf/201814504002.
31. Rosalia, M. and Fonseca, J. "An engineering understanding of the small intestine", PhD Thesis Sch. Chem. Eng. Univ. Birmingham (2011).
32. Tharakan, A., Rayment, P., Fryer, P.J., et al. "Modelling of physical and chemical processes in the small intestine", PhD Thesis Cent. Formul. Eng. Dep. Chem. Eng. Univ. Birmingham, no. September, pp. 1-302 (2008).
33. Abbas, N., Nadeem, S., Saleem, A., et al. "Analysis of non-Newtonian  fluid with phase flow model", Sci. Iran., 28(6F), pp. 3743-3752 (2021). DOI:10.24200/sci.2021.53475.3258.
34. Tripathi, D. and Beg, O.A. "Mathematical biosciences peristaltic propulsion of generalized Burgers' fluids through a non-uniform porous medium: A study of chyme dynamics through the diseased intestine", Math. Biosci., 248, pp. 1-11 (2013). DOI: 10.1016/j.mbs.2013.11.006.
35. Marciani, L., Gowland, P.A., Spiller, R.C., et al. "Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying", Am. J. Physiol Gastrointest Liver Physiol, 280, pp. 227-33 (2015).
36. Maxime, M.M., Brown, N.E., Poling, H.M., et al. "In vivo model of small intestine", 1597, pp. 229-245 (2017). DOI: 10.1007/978-1-4939-6949-4.
37. Marrero, D., Pujol-Vila, F., Vera, D., et al. "Gut-on-achip: Mimicking and monitoring the human intestine", Biosens. Bioelectron., 181, p. 113156 (2021). DOI: 10.1016/j.bios.2021.113156.
38. Ashraf, R., Suhail, A., Mustafa, A.U., et al. "Measuring viscosity of different fluids using ball drop method", ASME, MEL III, pp. 1-5 (2018).
39. Yusuf, T.A., Bolaji, B.O., Ismaila, S.O., et al. "Determination of thermo physical properties of Water- Extract from Fermented Ground Maize (WEFGM) as possible alternative to water use as cutting  fluid", Silpakorn Univ. Sci. Technol. J., 10(2), pp. 51-60 (2016).
40. Nadeem, S., Amin, A., Abbas, N., et al. "Effects of heat and mass transfer on stagnation point flow of micropolar Maxwell fluid over Riga plate", Sci. Iran., 28(6 F), pp. 3753-3766 (2022). DOI: 10.24200/sci.2021.53858.3454.
41. Ibitoye, S.E., Adegun, I.K., Omoniyi, P.O., et al. "Numerical investigation of thermo-physical properties of the non-Newtonian fluid in a modeled intestine", J. Bioresour. Bioprod., 5(3), pp. 211-221 (2020). DOI: 10.1016/j.jobab.2020.07.007.
42. Van de Wiele, T., Van den Abbeele, P., Ossieur, W., et al., The Simulator of the Human Intestinal Microbial Ecosystem, Cham (CH): Springer (2015). DOI: 10.1007/978-3-319-16104-4 27.
43. Stoll, B.R., Batycky, R.P., Leipold, H.R., et al. "A theory of molecular absorption from the small intestine", Chem. Eng. Sci., 55, pp. 473-489 (2016).
44. Ismail, A.A. "Peristaltic flow of some selected food supplements in a modeled esophagus", M. Eng. Thesis Dep. Mech. Eng., Fac. Eng. Univ. Ilorin, pp. 1-150 (2017).
Volume 30, Issue 1
Transactions on Mechanical Engineering (B)
January and February 2023
Pages 39-51
  • Receive Date: 14 March 2022
  • Revise Date: 09 June 2022
  • Accept Date: 15 August 2022