1. Agathokleous, R.A. and Kalogirou, S.A. "Status, barriers and perspectives of building integrated photovoltaic systems", Energy, 191, 116471 (2020). DOI: 10.1016/j.energy.2019.116471.
2. Martinopoulos, G. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis", Applied Energy, 257, 114035 (2020). https://doi.org/10.1016/j.apenergy.2019.114035.
3. Refaat, A., Osman, M.H., and Korovkin, N.V. "Current collector optimizer topology to extract maximum power from non-uniform aged PV array", Energy, 195, 116995 (2020). https://doi.org/10.1016/j.energy.2020.116995.
4. Yilmaz, U., Turksoy, O., and Teke, A. "Improved MPPT method to increase accuracy and speed in photovoltaic systems under variable atmospheric conditions", International Journal of Electrical Power and Energy Systems, 113, pp. 634-651 (2019). https://doi.org/10.1016/j.ijepes.2019.05.074.
5. Bollipo, R.B., Mikkili, S., and Bonthagorla, P.K. "Critical review on PV MPPT techniques: Classical, intelligent and optimization", IET Renewable Power Generation, 14(9), pp. 1433-1452 (2020). https://doi.org/10.1049/iet-rpg.2019.1163.
6. Bhan, V., Hashmani, A., and Shaikh, M. "A new computing perturb-and-observe-type algorithm for MPPT in solar photovoltaic systems and evaluation of its performance against other variants by experimental validation", Scientia Iranica, 26(6), pp. 3656-3671 (2019). DOI: 10.24200/sci.2019.54183.3635.
7. Kumar, N., Hussain, I., Singh, B., et al. "Self-adaptive incremental conductance algorithm for swift and ripple free maximum power harvesting from PV array", IEEE Transactions on Industrial Informatics, 14(5), pp. 2031-2041 (2018). DOI: 10.1109/TII.2017.2765083.
8. Douiri, M.R. "Particle swarm optimized neurofuzzy system for photovoltaic power forecasting model", Solar Energy, 184, pp. 91-104 (2019). https://doi.org/10.1016/j.solener.2019.03.09.
9. Rezk, H., Aly, M., Al-Dhaifallah, M., et al. "Design and hardware implementation of new adaptive fuzzy ogic-based MPPT control method for photovoltaic applications", IEEE Access, 7, pp. 106427-106438 (2019). DOI: 10.1109/ACCESS.2019.2932694.
10. Elnozahy, A., Yousef, A.M., Abo-Elyousr, F.K., et al. "Performance improvement of hybrid renewable energy sources connected to the grid using artificial neural network and sliding mode control", Journalof Power Electronics, 21, pp. 1166-1179 (2021). https://doi.org/10.1007/s43236-021-00242-8.
11. Huang, Y.P., Chen, X., and Ye, C.E. "A hybrid maximum power point tracking approach for photovoltaic systems under partial shading ocnditions using a modified genetic algorithm and the fire y algorithm", International Journal of Photoenergy, 2018, 7598653 (2018). https://doi.org/10.1155/2018/7598653.
12. Harrag, A. and Messalti, S. "IC-based variable step size neuro-fuzzy MPPT improving PV system performances", Energy Procedia, 157, pp. 363-374 (2019). https://doi.org/10.1016/j.egypro.2018.11.201.
13. Pan, Z., Quynh, N.V., Ali, Z.M., et al. "Enhancement of maximum power point tracking technique based on PV-battery system using hybrid BAT algorithm and fuzzy controller", Journal of Cleaner Production, 274, 123719 (2020). https://doi.org/10.1016/j.jclepro.2020.123719.
14. Bhattacharyya, S., Kumar P, D.S., Samanta, S., et al. "Steady output and fast tracking MPPT (SOFTMPPT) for P&O and InC algorithms", IEEE Transactions on Sustainable Energy, 12(1), pp. 293-302 (2021). DOI: 10.1109/TSTE.2020.2991768.
15. Kavya, M. and Jayalalitha, S. "A novel coarse and fine control algorithm to improve Maximum Power Point Tracking (MPPT) efficiency in photovoltaic system", ISA Transactions, 121, pp. 180-190 (2022). https://doi.org/10.1016/j.isatra.2021.03.036.
16. Charaabi, A., Zaidi, A., Barambones, O., et al. "Implementation of adjustable variable step based backstepping control for the PV power plant", International Journal of Electrical Power & Energy Systems, 136, 107682 (2022). https://doi.org/10.1016/j.ijepes.2021.107682.
17. Aminnejhad, H., Kazeminia, S., and Aliasghary, M. "Robust sliding-mode control for maximum power point tracking of photovoltaic power systems with quantized input signal", Optik, 247, 167983 (2021). https://doi.org/10.1016/j.ijleo.2021.167983.
18. Laxman, B., Annamraju, A., Srikanth, N.V. "A grey wolf optimized fuzzy logic based MPPT for shaded solar photovoltaic systems in microgrids", International Journal of Hydrogen Energy, 46(18), pp. 10653-10665 (2021). https://doi.org/10.1016/j.ijhydene.2020.12.158.
19. Srinivasarao, P., Peddakapu, K., Mohamed, M.R., et al. "Simulation and experimental design of adaptive-based maximum power point tracking methods for photovoltaic systems", Computers & Electrical Engineering, 89, 106910 (2021). https://doi.org/10.1016/j.compeleceng.2020.106910.
20. Verma, P., Garg, R., and Mahajan, P. "Asymmetrical fuzzy logic control-based MPPT algorithm for standalone photovoltaic systems under partially shaded conditions", Scientia Iranica, 27(6), pp. 3162-3174 (2020). DOI: 10.24200/SCI.2019.51737.2338.
21. Haji, D. and Naci, G. "Dynamic behaviour analysis of ANFIS based MPPT controller for standalone photovoltaic systems", International Journal of Renewable Energy Research, 10(1), pp. 101-108 (2020). https://doi.org/10.20508/ijrer.v10i1.10244.g7897.
22. Bjaoui, M., Khiari, B., Ridha, B., et al. "Practical implementation of the backstepping sliding mode controller MPPT for a PV-storage application", Energies, 12(18), 3539 (2019). https://doi.org/10.3390/en12183539.
23. Hussain, A., Sher H.A., Murtaza, A.F., et al. "Improved restricted control set model predictive control (iRCS-MPC) based maximum power point tracking of photovoltaic module", IEEE Access, 7, pp. 149422- 149432 (2019). DOI: 10.1109/ACCESS.2019.2946747.
24. Ge, X., Ahmed, F.W., Rezvani, A., et al. "Implementation of a novel hybrid BAT-Fuzzy controller based MPPT for grid-connected PV-battery system", Control Engineering Practice, 98, 104380 (2020). https://doi.org/10.1016/j.conengprac.2020.10438.
25. Subudhi, B. and Pradhan, R. "A new adaptive maximum power point controller for a photovoltaic system", IEEE Transactions on Sustainable Energy, 10(4), pp. 1625-1632 (2019). DOI: 10.1109/TSTE.2018.2865753.
26. Salim, M.B., Hayajneh, H.S., Mohammed, A., et al. "Robust direct adaptive controller design for photovoltaic maximum power point tracking application", Energies, 12(16), 3182 (2019). https://doi.org/10.3390/en12163182.
27. Sahu, P. and Dey, R. "An improved 2-level MPPT scheme for photovoltaic systems using a novel high-frequency learning based adjustable gain-MRAC controller", Scientific Reports, 11, 23131 (2021). https://doi.org/10.1038/s41598-021-02586-4.
28. Khanna, R., Zhang, Q., Stanchina, W.E., et al. "Maximum power point tracking using model reference adaptive control", IEEE Transactions on Power Electronics, 29(3), pp. 1490-1499 (2014). DOI: 10.1109/TPEL.2013.2263154.
29. Sahu, P. and Dey, R. "Maximum power point tracking using adjustable gain based model reference adaptive control", Journal of Power Electronics, 22, pp. 138-150 (2022).
https://doi.org/10.1007/s43236-021- 00336-3.
30. Bhunia, M., Subudhi, B., and Ray, P.K. "Design and real-time implementation of cascaded model reference adaptive controllers for a three-phase gridconnected PV system", IEEE Journal of Photovoltaics, 11(5), pp. 1319-1331 (2021). DOI: 10.1109/JPHOTOV. 2021.3093047.
31. Hasanien, H.M. "An adaptive control strategy for low voltage ride through capability enhancement of gridconnected photovoltaic power plants", IEEE Transactions on Power Systems, 31(4), pp. 3230-3237 (2016). DOI: 10.1109/TPWRS.2015.2466618.
32. Chaibi, Y., Salhi, M., and El-Jouni, A. "Sliding mode controllers for standalone PV systems: modeling and approach of control", International Journal of Photoenergy, 2019, 5092078 (2019). https://doi.org/10.1155/2019/5092078.