References:
1. Hung, S., Subic, A., and Wellnitz, J., Sustainable Automotive Technologies, Springer, Berlin (2011).
2. Jaller, M., Pineda, L., and Ambrose, H. "Evaluating the use of zero-emission vehicles in last mile deliveries", ITS Reports (2017). http://dx.doi.org/10.7922/G2JM27TW.
3. Davis, B.A. and Figliozzi, M.A. "A methodology to evaluate the competitiveness of electric delivery trucks", Transportation Research Part E: Logistics and Transportation Review, 49(1), pp. 8-23 (2013). https://doi.org/10.1016/j.tre.2012.07.003.
4. Rasouli, S. and Timmermans, H. "Uncertainty in travel demand forecasting models: Literature review and research agenda", Transportation Letters, 4(1), pp. 55-73 (2012). https://doi.org/10.3328/TL.2012.04.01.55-73.
5. Klemick, H., Kopits, E., Wolverton, A., et al. "Heavyduty trucking and the energy efficiency paradox: evidence from focus groups and interviews", Transportation Research Part A: Policy and Practice, 77, pp. 154- 166 (2015). https://doi.org/10.1016/j.tra.2015.04.004.
6. Brownstone, D., Bunch, D.S., Golob, T.F., et al. "Atransactions choice model for forecasting demand for alternative-fuel vehicles", Research in Transportation Economics, 4, pp. 87-129 (1996). https://doi.org/10.1016/S0739-8859(96)80007-2.
7. Miller, M., Wang, Q., and Fulton, L. "Truck Choice Modeling: Understanding California's Transition to Zero-Emission Vehicle Trucks Taking into Account Truck Technologies, Costs, and Fleet Decision Behavior", UC Davis: National Center for Sustainable Transportation (2017). https://escholarship.org/uc/item/1xt3k10x.
8. Zhang, Y., Jiang, Y., Rui, W., et al. "Analyzing truck fleets, acceptance of alternative fuel freight vehicles in China", Renewable Energy, 134, pp. 1148-1155 (2019). https://doi.org/10.1016/j.renene.2018.09.016.
9. Bunch, D.S., Brandley, M., Golob, T.F., et al. "Demand for clean alternative-fuel vehicles in California: A discrete-choice stated preference pilot project", Transportation Research Part A: Policy and Practice, 27(3), pp. 237-253 (1993). https://doi.org/10.1016/0965- 8564(93)90062-P.
10. Kurani, K.S., Turrentine, T., and Sperling, D. "Demand for electric vehicles in hybrid household: An exploratory analysis", Transport Policy, 1(4), pp. 224- 256 (1994). 10.1016/0967-070X(94)90005-1.
11. Jeremy, H. and Richard, N. "Life cycle model of alternative fuel vehicles: Emissions, energy, and cost tradeo ffs", Transportation Research Part, 35, pp. 243-266 (2001). https://doi.org/10.1016/S0965-8564(99)00057-9.
12. Aydin, S. and Kahraman, C. "Vehicle selection for public transportation using an integrated multi criteria decision making app. roach: a case of Ankara", Journal of Intelligent and Fuzzy Systems, 26(5), pp. 2467-2481 (2014). DOI: 10.1177/0036850420950120.
13. Yavuz, M., Oztaysi, B., Onar, S.C., et al. "Multicriteria evaluation of alternativefuel vehicles via a hierarchical hesitant fuzzy linguistic model", Expert System and Application, 42(5), pp. 2835-2848 (2015). https://doi.org/10.1016/j.eswa.2014.11.010.
14. Wtrobski, J., Maecki, K., Kijewska, K., et al. "Multi-criteria analysis of electric vans for city logistics", Sustainability, 9(8), p. 1453 (2017). https://doi.org/10.3390/su9081453.
15. Jaller, M. and Otay, I. "Evaluating sustainable vehicle technologies for freight transportation using spherical fuzzy AHP and TOPSIS", Advances in Intelligent Systems and Computing, 1197, pp. 118-126 (2020).
16. Alkharabsheh, A., Moslem, S., Oubahman, L., et al. "An integrated app. roach of multi-criteria decisionmaking and grey theory for evaluating urban public transportation systems", Sustainability, 13(2740) (2021). https://doi.org/10.3390/su13052740.
17. Ma, J., Wang, N., and Kong, D. "Market forecasting modeling study for new energy vehicle based on AHP and logit regression", Journal of Tongji University, 37(8), pp. 1079-1084 (2009). 10.3969/j.issn.0253-374x.2009.08.018.
18. Erdem, C., Enturk, I.S., and Simsek, T. "Identifying the factors affecting the willingness to pay for fuel-efficient vehicles in Turkey: A case of hybrids", Energy Policy, 38(6), pp. 3038-3043 (2010). https://doi.org/10.1016/j.enpol.2010.01.043.
19. Maria, Y.R., Susana, M., Manfred, F., et al. "Public attitudes towards and demand for hydrogen and fuel cell vehicles: A review of the evidence and methodological implications", Energy Policy, 38, pp. 5301-5310 (2010). https://doi.org/10.1016/j.enpol.2009.03.029.
20. Mabit, S.L. and Fosgerau, M. "Demand for alternativefuel vehicles when registration taxes are high", Transportation Research Part D: Transport and Environment, 16(3), pp. 225-231 (2011). https://doi.org/10.1016/j.trd.2010.11.001.
21. Behnam, V., Zandieh, M., and Moghaddam, R.T. "Two novel FMCDM methods for alternative-fuel buses selection", Applied Mathematical Modeling, 35, pp. 1396-1412 (2011). https://doi.org/10.1016/j.apm.2010.09.018.
22. Zhang, Y., Yu, Y., and Zou, B. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV", Energy Policy, 39, pp. 7015-7024 (2011). https://doi.org/10.1016/j.enpol.2011.07.055.
23. Koohathongsumrit, N. and Meethom, W. "An integrated app. roach of fuzzy risk assessment model and data envelopment analysis for route selection in multimodal transportation networks", Expert Systems with Applications, 171(114342) (2021). https://doi.org/10.1016/j.eswa.2020.114342.
24. Poudenx, P. "The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation", Transportation Research Part A: Policy and Practice, 42(6), pp. 901- 909 (2008). https://doi.org/10.1016/j.tra.2008.01.013.
25. Daryanto, Y., Wee, H.M., and Astanti, R.D. "Threeechelon supply chain model considering carbon emission and item deterioration", Transportation Research Part E: Logistics and Transportation Review, 122, pp. 368- 383 (2019). https://doi.org/10.1016/j.tre.2018.12.014.
26. Zadeh, L.A. "Fuzzy sets", Information and Control, 8, pp. 338-353 (1965). 10.1016/S0019-9958(65)90241-X.
27. Atanassov, K.T. "Intuitionistic fuzzy sets", Fuzzy Sets ans Systems, 20(1), pp. 87-96 (1986). 10.1016/S0165- 0114(86)80034-3.
28. Yager, R.R. and Abbasov, A.M. "Pythagorean membership grades, complex numbers, and decision making", International Journal of Intelligent Systems, 28, pp. 436-452 (2013). https://doi.org/10.1002/int.21584.
29. Yager, R.R. "Pythagorean fuzzy subsets", IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, Canada, IEEE, pp. 57-61 (2013).
30. Yager, R.R. "Pythagorean membership grades in multi criteria decision-making", IEEE Transactions on Fuzzy Systems, 22, pp. 958-965 (2014). DOI: 10.1109/TFUZZ.2013.2278989.
31. Yager, R.R. "Generalized orthopair fuzzy sets", IEEE Transactions on Fuzzy Systems, 25, pp. 1222-1230 (2017). DOI: 10.1109/TFUZZ.2016.2604005.
32. Liu, P. and Wang, P. "Some q-rung orthopair fuzzy aggregation operator and their application to multi-attribute decision making", International Journal of Intelligent Systems, 33(2), pp. 259-280 (2018). https://doi.org/10.1002/int.21927.
33. Garg, H. "CN-ROFS: connection number-based qrung orthopair fuzzy set and their application to decision-making process", International Journal of Intelligent Systems, 36(7), pp. 3106-3143 (2021). https://doi.org/10.1002/int.22406.
34. Peng, X., Dai, J., and Garg, H. "Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function", International Journal of Intelligent Systems, 33(11), pp. 2255-2282 (2018). https://doi.org/10.1002/int.22028.
35. Jana, C., Muhiuddin, G., and Pal, M. "Some Dombi aggregation of q-rung orthopair fuzzy numbers in multiple-attribute decision making", International Journal of Intelligent Systems, 34(12), pp. 3220-3240 (2019). https://doi.org/10.1002/int.22191.
36. Wei, G., Gao, H., and Wei, Y. "Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making", International Journal of Intelligent Systems, 33(7), pp. 1426-1458 (2018). https://doi.org/10.1002/int.21985.
37. Lin, M., Li, X., and Chen, L. "Linguistic q-rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators", International Journal of Intelligent Systems, 35(2), pp. 217-249 (2020). https://doi.org/10.1002/int.22136.
38. Riaz, M., Salabun, W., Farid, H.M.A., et al. "A robust q-rung orthopair fuzzy information aggregation using Einstein operations with application to sustainable energy planning decision management", Energies, 13(9), 2125 (2020). https://doi.org/10.3390/en13092155.
39. Riaz, M., Pamucar, D., Farid, H.M.A., et al. "qrung orthopair fuzzy prioritized aggregation operators and their app. lication towards green supp. lier chain management", Symmetry, 12(6), Article no. 976 (2020). https://doi.org/10.3390/sym12060976.
40. Riaz, M., Farid, H.M.A., Kalsoom, H., et al. "A robust q-rung orthopair fuzzy Einstein prioritized aggregation operators with app. lication towards MCGDM", Symmetry, 12(6), Article no. 1058 (2020). https://doi.org/10.3390/sym12061058.
41. Farid, H.M.A. and Riaz, M. "Some generalized qrung orthopair fuzzy Einstein interactive geometric aggregation operators with improved operational laws", International Journal of Intelligent Systems, 36, pp. 7239-7273 (2021). https://doi.org/10.1002/int.22587.
42. Liu, P. and Liu, J. "Some q-rung orthopai fuzzy bonferroni mean operators and their application to multi-attribute group decision making", International Journal of Intelligent Systems, 33(2), pp. 315-347 (2018). https://doi.org/10.1002/int.21933.
43. Joshi, B.P. and Gegov, A. "Confidence levels q-rung orthopair fuzzy aggregation operators and its applications to MCDM problems", International Journal of Intelligent Systems, 35(1), pp. 125-149 (2020). https://doi.org/10.1002/int.22203.
44. Riaz, M., Razzaq, A., Kalsoom, H., et al. "qrung orthopair fuzzy geometric aggregation operators based on generalized and group-generalized parameters with app. lication to water loss management", Symmetry, 12(8), Article no. 1236 (2020). https://doi.org/10.3390/sym12081236.
45. Riaz, M., Garg, H., Farid, H.M.A., et al. "Novel qrung orthopair fuzzy interaction aggregation operators and their application to low-carbon green supply chain management", Journal of Intelligent and Fuzzy Systems, 41(2), pp. 4109-4126 (2021). DOI: 10.3233/JIFS- 210506.
46. Akram, M., Khan, A., Alcantud, J.C.R., et al. "A hybrid decision-making framework under complex spherical fuzzy prioritized weighted aggregation operators", Expert Systems, 4, Article no. 12712 (2021). /doi.org/10.1111/exsy.12712.
47. Jana, C., Pal, M., and Liu, P. "Multiple attribute dynamic decision making method based on some complex aggregation functions in CQROF setting", Comp. App. l. Math, 41(103) (2022). https://doi.org/10.1007/s40314-022-01806-5.
48. Feng, F., Zheng, Y., Alcantud, J.C.R., et al. "Minkowski weighted score functions of intuitionistic fuzzy values", Mathematics, 8(7), pp. 1-30 (2020). https://doi.org/10.3390/math8071143.
49. Ashraf, S., Abdullah, S., Zeng, S., et al. "Fuzzy decision supp. ort modeling for hydrogen power plant selection based on single valued neutrosophic Sine trigonometric aggregation operators", Symmetry, 12(2), Article no. 298 (2020). https://doi.org/10.3390/sym12020298.
50. Liu, P., Chen, S.M., and Wang, P. "Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators", IEEE Transactions on Systems, Man, and Cybernetics, 99, pp. 1-16 (2019). DOI: 10.1109/TSMC.2018.2852948.
51. Xing, Y., Zhang, R., and Zhou, Z. "Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making", Soft Computing, 23(11), pp. 627-649 (2019). https://doi.org/10.1007/s00500-018-03712-7.
52. Liu, P. and Wang, P. "Multiple-attribute decisionmaking based on Archimedean Bonferroni operators of q-rung orthopair fuzzy numbers", IEEE Transactions on Fuzzy Systems, 27(5), pp. 834-848 (2019). DOI: 10.1109/TFUZZ.2018.2826452.
53. Liu, Z., Liu, P., and Liang, X. "Multiple attribute decision- making method for dealing with heterogeneous relationship among attributes and unknown attribute weight information under q-rung orthopair fuzzy environment", International Journal of Intelligent Systems, 33, pp. 1900-1928 (2018). https://doi.org/10.1002/int.22001.
54. Mahmood, T. and Ali, Z. "A novel approach of complex q-rung orthopair fuzzy hamacher aggregation operators and their app. lication for cleaner production assessment in gold mines", Journal of Ambient Intelligence and Humanized Computing, 12, pp. 8933-8959(2021). https://doi.org/10.1007/s12652-020-02697-2.
55. Saha, A., Majumder, P., Dutta, D., et al. "Multiattribute decision making using q-rung orthopair fuzzy weighted fairly aggregation operators", Journal of Ambient Intelligence and Humanized Computing, 12, pp. 8149-8171 (2021). https://doi.org/10.1007/s12652-020- 02551-5.
56. Hussain, A., Ali, M.I., and Mahmood, T. "Hesitant q-rung orthopair fuzzy aggregation operators with their app. lications in multi-criteria decision making", Iranian Journal of Fuzzy Systems, 17(3), pp. 117-134 (2020). 10.22111/ijfs.2020.5353.
57. Jana, C., Pal, M., and Wang, J. "A robust aggregation operator for multi-criteria decision-making method with bipolar fuzzy soft environment", Iranian Journal of Fuzzy Systems, 16(6), pp. 1-16 (2019). 10.22111/ijfs.2019.5014.
58. Wang, L., Garg, H., and Li, N. "Pythagorean fuzzy interactive Hamacher power aggregation operators for assessment of express service quality with entropy weight", Soft Computing, 25, pp. 973-993 (2021). https://doi.org/10.1007/s00500-020-05193-z.
59. Wang, L. and Garg, H. "Algorithm for multiple attribute decision-making with interactive archimedean norm operations under pythagorean fuzzy uncertainty", International Journal of Computational Intelligence Systems, 14(1), pp. 503-527 (2021). 10.2991/ijcis.d.201215.002.
60. Wang, L. and Li, N. "Pythagorean fuzzy interaction power Bonferroni mean aggregation operators in multiple attribute decision making", International Journal of Intelligent Systems, 35(1), pp. 150-183 (2020). https://doi.org/10.1002/int.22204.
61. Wei, G. "Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making", Journal of Intelligent and Fuzzy Systems, 33(4), pp. 2119-2132 (2017). 10.3233/JIFS- 162030.
62. Gao, H., Lu, M., Wei, G., et al. "Some novel Pythagorean fuzzy interaction aggregation operators in multiple attribute decision making", Fundamenta Informaticae, 159(4), pp. 385-428 (2018). https://doi.org/10.1002/int.22157.
63. Garg, H. "Some series of intuitionistic fuzzy interactive averaging aggregation operators", Springer Plus, 5, Artilce no. 999 (2016). https://doi.org/10.1186/s40064- 016-2591-9.
64. Garg, H. "Generalised Pythagorean fuzzy geometric interactive aggregation operators using Einstein operations and their application to decision making", Journal of Experimental and Theoretical Artificial Intelligence, 30(6), pp. 763-794 (2018). https://doi.org/10.1080/0952813X.2018.1467497.
65. Garg, H. and Arora, R. "Novel scaled prioritized intuitionistic fuzzy soft interaction averaging aggregation operators and their application to multi criteria decision making", Engineering Applications of Artificial Intelligence, 71, pp. 100-112 (2018). https://doi.org/10.1016/j.engappai.2018.02.005.
66. Farid, H.M.A. and Riaz, M. "Single-valued neutrosophic Einstein interactive aggregation operators with app. lications for material selection in engineering design: case study of cryogenic storage tank", Complex and Intelligent Systems, 8, pp. 2131-2149 (2022). https://doi.org/10.1007/s40747-021-00626-0.
67. Lin, M., Li, X., Chen, R., et al. "Picture fuzzy interactional partitioned Heronian mean aggregation operators: An application to MADM process", Artificial Intelligence Review, 55, pp. 1171-1208 (2022). ttps://doi.org/10.1007/s10462-021-09953-7.
68. Luo, S. and Xing, L. "Picture fuzzy interaction partitioned heronian aggregation operators for hotel selection", Mathematics, 8(1), Aricle no. 3 (2020). https://doi.org/10.3390/math8010003.
69. He, Y.D., Chen, H.Y., and Zhou, L.G. "Generalized intuitionistic fuzzy geometric interaction operators and their application to decision making", Expert System and App. lication, 41, pp. 2484-2495 (2014). https://doi.org/10.1016/j.eswa.2013.09.048.
70. Yager, R.R. "Prioritized aggregation operators", International Journal of Approximate Reasoning, 48, pp. 263-274 (2008).
71. Third Assessment Report-Climate Change 2001, the third assessment report of the intergovernmental panel on climate change, IPCC/WMO/UNEP.
72. www.eea.europa.eu/data-and-maps/indicators/ transport-emissions-of-air-pollutants-8/transport -emissions-of-air-pollutants-8.
73. Dobranskyte-Niskota, A., Perujo, A., and Pregl, M. "Indicators to assess sustainability of transport activities", European Commission Joint Research Centre Institute for Environment and Sustainability, DOI:10.2788/54736.