Document Type : Article


1 Penza State Technological University, 440039, Russia, Penza, BaydukovProyezd / Gagarin Street, 1a/11

2 Penza State University, 440026, Russia, Penza, Krasnaya Street, 40


Abstract. This article discusses the problem of data synchronization methods using microservice architecture. Microservices is a popular and widespread software architecture today. The article reviews three main ways of interaction of microservices. They are event-based communication, interaction through direct HTTP requests and messaging, and also highlights and analyzes their advantages and disadvantages. The main purpose of the article is to analyze and make offer of the optimal option for solving the problem of synchronizing interacting microservices in real time. The optimal solution involves using the Apache Kafka message broker. It publishes data streams and subscriptions to them, as well as stores and processes them. Mathematical modeling of the proposed data synchronization method was described by constructing its state macine, as well as a system of canonical equations.


1.    Richardson K., “Microservices, Patterns of development and refactoring”. St. Petersburg: Peter, p. 544, (2019).
2.    Whitesell, S., Richardson, R., & Groves, M. D. “Decentralizing Data. In Pro Microservices”, NET 6 Apress, Berkeley, CA, pp. 137-170, (2022).
3.    Qazani, M.R.C., Asadi, H., Khoo, S. and et al., “A linear time-varying model predictive control-based motion cueing algorithm for hexapod simulation-based motion platform”. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(10), pp.6096-6110, (2019).
4.    Akhir, E. A. P., Bachok, R., Arshad, nd et al., “Conceptual framework for SIDS alert system”. 4th International Conference on Computer and Information Sciences (ICCOINS) (pp. 1-5). IEEE, (2018).
5.    Modoni, G. E., Caldarola, E. G., Sacco, M., & et al., “Synchronizing physical and digital factory: benefits and technical challenges”. Procedia Cirp, 79, 472-477, (2019). 
6.    McNally, B., Lu, Y., Shively-Ertas, E., et al., “A Simple and Effective Methodology for Generating Bounded Solutions for the Set K-Covering and Set Variable K-Covering Problems: A Guide for or Practitioners”. Review of Computer Engineering Research, 8(2), 76–95, (2021).
7.    Girrbach, P. “The Metaphorical Culturalistic Approach to Technology Assessment”. Tehnički glasnik, 15(4), 554-561, (2021).
8.    Al-Masri E., Mahmoud Q. H. “A broker for universal access to web services”, Seventh Annual Communication Networks and Services Research Conference, pp. 118-125, (2009).
9.    Qazani, M.R.C., Asadi, H., Bellmann, T., et al., “Adaptive washout filter based on fuzzy logic for a motion simulation platform with consideration of joints’ limitations”, IEEE Transactions on Vehicular Technology, 69(11), pp.12547-12558, (2020).
10.    de Toledo, S. S., Martini, A., & Sjøberg, D. I. “Identifying architectural technical debt, principal, and interest in microservices: A multiple-case study”. Journal of Systems and Software, 177, 110968, (2021).
11.    Pashchenko D.V., Jaafar M. S., Zinkin S.A., et al., “Directly executable formal models of middleware for MANET and cloud networking and computing,” J. Phys. Conf. Ser., 710 (1), pp. 12024, (2016), doi: 10.1088/1742-6596/710/1/012024.
12.    Qazani, M.R.C., Asadi, H., Mohamed, S., et al. “An optimal washout filter for motion platform using neural network and fuzzy logic”, Engineering Applications of Artificial Intelligence, 108, p.104564, (2022).
13.    Narhid N., Shapira G., Pavlino T., “Apache Kafka. Streaming data processing and analysis”, St. Petersburg: Peter, 320 p, (2019).
14.    Irandoost, A., & Kargar, S. “An integrated optimization of routing and scheduling of liner ships in offshore logistics management” Journal of Research in Science, Engineering and Technology, 9(02), 17-35, (2021).
15.    Sun, X., Liang, Y., & Huang, H. “Design and Implementation of Internet of Things Platform based on Microservice and Lightweight Container”. IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 9, pp. 1353-1357, (2020).
16.    Božić, D. (2021). “Applying Simulation Modelling in Quantifying Optimization Results”. Tehnički glasnik, 15(4), 518-523.
17.    Nagothu, D., Xu, R., Nikouei, S. Y., et al., “A microservice-enabled architecture for smart surveillance using blockchain technology”. IEEE international smart cities conference (ISC2), pp. 1-4, (2018).
18.    Seng J. L., Chen T. C. “An analytic approach to select data mining for business decision”, Expert Systems with Applications. 37(12), pp. 8042-8057, (2018).
19.    Chang C. I. “Hyperspectral data processing: algorithm design and analysis”, John Wiley & Sons, London, UK, (2013).
20.    Jia C., Tan C. Y., Yong A. “A grid and density-based clustering algorithm for processing data stream”, Second International Conference on Genetic and Evolutionary Computing, IEEE, pp. 517-521, (2008).
21.    Srinivasareddy S., Narayana Y., Krishna D. “Sector Beam Synthesis in Linear Antenna Arrays using Social Group Optimization Algorithm”, National Journal of Antennas and Propagation, 3 (2), 6-9, (2020). doi:10.31838/NJAP/03.02.02
22.    Prokofiev O.V., Savochkin A.E. “Additive noise effect on the error of time interval forming”, Proceedings Global Smart Industry Conference, GloSIC, pp. 255–258, 9267820, (2020).
23.    Deinum M. “Java Enterprise Services, Spring Boot 2 Recipes” Apress, Berkeley, pp. 239-256, (2018).
24.    Esmaeeli, J., Amiri, M., & Taghizadeh, H. “A new approach in the DEA technique for measurement of productivity of decision-making units through efficiency and effectiveness”. Scientia Iranica, (2021), 10.24200/sci.2020.54858.3961.
25.    Salehi, S. M., Farrahi, G. H., & Sohrabpour, S. “A new technique of the first and second limits”. Scientia Iranica, 24(3), 1171-1180, (2020).
26.    Sarvestani, E., & Khayati, G. R. “An integrated model for predicting the size of silver nanoparticles in montmorillonite/chitosan bionanocomposites: A hybrid of data envelopment analysis and genetic programming approach”, Scientia Iranica, 28(3), 1871-1883, (2021).
27.    Banumathi, S. D., & Gayathri, S. “Image Integration with Local Linear Model Using Demosaicing Algorithm”. International Journal of Communication and Computer Technologies, 5(1), 36-36, (2019).
28.    Barzamini, H., & Ghassemian, M. “Comparison analysis of electricity theft detection methods for advanced metering infrastructure in smart grid”, International Journal of Electronic Security and Digital Forensics, 11(3), 265-280, (2019).
29.    Alkawaz, M. H., Veeran, M. T., & Bachok, R. Digital image forgery detection based on expectation maximization algorithm. In 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA) (pp. 102-105). IEEE, (2020).
30.    Dahmardeh H., Zareh M., Mirzadeh A., et al., “Brain emotional learning basic intelligent control for congestion control of TCP networks”, J Basic Appl Sci Res, 3(1), 345-349, (2013).
31.    He, S., Zhao, L., & Pan, M. “The Design of Inland River Ship Microservice Information System Based on Spring Cloud”, 5th International Conference on Information Science and Control Engineering (ICISCE), pp. 548-551, (2018). 
32.    Elfaki, A. O., Abouabdalla, O. A., Fong, S. L., et al., “Review and future directions of the automated validation in software product line engineering”. Journal of Theoretical and Applied Information Technology, 42(1), 75-93, (2012).
33.    Arzo S. T., Scotece D., Bassoli R., et al., “MSN: A Playground Framework for Design and Evaluation of MicroServices-Based sdN Controller”. Journal of Network and Systems Management, 30(1), 1-31, (2022).
34.    Ahmadi, Z., Haghighi, M., & Validi, Z. “A Novel Approach for Energy Optimization in Distributed Databases in Wireless Network Applications”. Journal of Management and Accounting Studies, 8(3), (2020).