References:
1. Hao, C., EL-Refaie, A.M., and Demerdash, N.A.O. "Flux-switching permanent magnet machines: A review of opportunities and challenges-part I: fundamentals and topologies", IEEE Trans. Energy Conver., 35(2), pp. 684-698 (2019). DOI: 10.1109/TEC.2019.2956600.
2. Zhu, X., Hua, W., and Zhang, G. "Analysis and reduction of cogging torque for flux switching permanent magnet machines", IEEE Trans. Ind. Appl., 55(6), pp. 5854-5864 (2019). DOI: 10.1109/TIA.2019.2938721.
3. Chen, Y. and Zhou, Y. "Radial displacement sensorless control of bearingless flux switching permanent magnet machines based on di erence of symmetric-winding flux linkages", IEEE Trans. Ind. Electron., 68(9), pp. 7793-7803 (2020). DOI: 10.1109/TIE.2020.3009575.
4. Zhu, J., Wu, L., and Wen, H. "Optimization and comparison of dual-armature flux switching permanent magnet machines with di erent stator core shapes", IEEE Trans. Ind. Appl., 58(1), pp. 314-324 (2022). DOI: 10.1109/TIA.2021.3131300.
5. Yu, D., Yunyun, C., Jiahong, Z., et al. "Design and performance investigation of double-side hybrid excitation flux-switching machine", IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), China (2018). DOI: 10.1109/ASEMD.2018.8558914.
6. Tang, Y., Paulides, J.J.H., Motoasca, T.E., et al. "Flux-switching machine with DC excitation", IEEE Trans. Magn., 48(11), pp. 3583-3586 (2012). DOI: 10.1109/TMAG.2012.2199100.
7. Wang, Y. and Deng, Z.Q. "Analysis of electromagnetic performance and control schemes of electrical excitation flux-switching machine for DC power systems", IEEE Trans. Energy Conver., 27(4), pp. 844-855 (2012). DOI: 10.1109/TEC.2012.2215920.
8. Wang, Y. and Deng, Z. "An integration algorithm for stator flux estimation of a Direct torque-controlled electrical excitation flux-switching generator", IEEE Trans. Energy Conver., 27(2), pp. 411-420 (2012). DOI: 10.1109/TEC.2012.2188139.
9. Hua, W., Cheng, M., and Zhang, G. "A novel hybrid excitation flux-switching motor for hybrid vehicles", IEEE Trans. Magn., 45(10), pp. 4728-4731 (2009). DOI: 10.1109/TMAG.2009.2022497.
10. Owen, R.L., Zhu, Z.Q., and Jewell, G.W. "Hybridexcited flux-switching permanent-magnet machines with iron flux bridges", IEEE Trans. Magn., 46(6), pp. 1726-1729 (2010). DOI: 10.1109/TMAG.2010.2040591.
11. Hua, W., Zhang, G., and Cheng, M. "Flux-regulation theories and principles of hybrid-excited flux-switching machines", IEEE Trans. Ind. Electron., 62(9), pp. 5359-5369 (2015). DOI: 10.1109/TIE.2015.2407863.
12. Nasr, A., Hlioui, S., Gabsi, M., et al. "Design optimization of a hybrid excited flux switching machine for aircraft-safe DC power generation using a diode bridge rectifier", IEEE Trans. Ind. Electron., 64(12), pp. 9896-9904 (2017). DOI: 10.1109/TIE.2017.2726974.
13. Abd Rani, J., Sulaiman, E., Ahmad, M.Z., et al. "The rotor-stator study of E-core hybrid flux switching motor", Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(2), pp. 21-25 (2018).
14. Ullah, W., Khan, F., Sulaiman, E., et al. "Analytical validation of novel consequent pole E-core stator permanent magnet flux switching machine", IET Electr. Power Appl., 14(5), pp. 789-796 (2020). DOI: 10.1049/iet-epa.2019.0257.
15. Li, J., Wang, K., and Liu, C. "A novel E-core hybridexcited flux switching machine based on biased flux", 20th International Conference on Electrical Machines and Systems (ICEMS), Australia (2017). DOI: 10.1109/ICEMS.2017.8056249.
16. Li, X., Shen, F., Yu, S., et al. "Flux-regulation principle and performance analysis of a novel axial partitioned stator hybrid-excitation flux-switching machine using parallel magnetic circuit", IEEE Trans. Ind. Electron., 68(8), pp. 6560-6573 (2021). DOI: 10.1109/TIE.2020.3001807.
17. Okada, T., Matsumori, H., Kosaka, T., et al. "Hybrid excitation flux switching motor with permanent magnet placed at middle of field coil slots and high filling factor windings", CES Transactions on Electrical Machines and Systems, 3(3), pp. 248-258 (2019). DOI: 10.30941/CESTEMS.2019.00033.
18. Otsuka, K., Okada, T., Mifune, T., et al. "Basic study on efficiency improvement of hybrid excitation flux switching motor using variably magnetizable permanent magnets for automotive traction drives", IEEE Energy Conversion Congress and Exposition (ECCE), USA (2020). DOI: 10.1109/ECCE44975.2020.9235605.
19. Hwang, C.C., Li, P.L., and Liu, C.T. "Design and analysis of a novel hybrid excited linear flux switching permanent magnet motor", IEEE Trans. Magn., 48(11), pp. 2969-2972 (2012). DOI: 10.1109/TMAG.2012.2195716.
20. Xu, Z., Xie, S., and Mao, P. "Analytical design of fluxswitching hybrid excitation machine by a nonlinear magnetic circuit method", IEEE Trans. Magn., 49(6), pp. 3002-3008 (2013). DOI: 10.1109/TMAG.2012.2236566.
21. Yu, J. and Liu, C. "Multi-objective optimization of a double-stator hybrid-excited flux-switching permanent-magnet machine", IEEE Trans. Energy Conver., 35(1), pp. 312-323 (2020). DOI: 10.1109/TEC.2019.2932953.
22. Zhu, X., Shu, Z., Quan, L., et al. "Multi-objective optimization of an outer-rotor V-shaped permanent magnet flux switching motor based on multi-level design method", IEEE Trans. Magn., 52(10), Article Sequence Number: 8205508 (2016). DOI: 10.1109/TMAG.2016.2581767.
23. Hua, W., Cheng, M., Zhu, Z.Q., et al. "Design of fluxswitching permanent magnet machine considering the limitation of inverter and flux-weakening capability", Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, USA (2006). DOI: 10.1109/IAS.2006.256877.
24. Chen, J.T. and Zhu, Z.Q. "Winding configurations and optimal stator and rotor pole combination of fluxswitching PM brushless AC machines", IEEE Trans. Energy Conver., 25(2), pp. 293-302 (2010). DOI: 10.1109/TEC.2009.2032633.
25. Krishnan, R. "Switched reluctance motor drives: modeling, simulation, analysis, design, and applications", CRC press (2017). DOI: 10.1201/9781420041644.