Multi-objective design optimization of a hybrid excitation flux switching permanent magnet motor based on design sensitivity analysis

Document Type : Article

Authors

1 Departement of Electrical Engineering, Lorestan University, 68151-44316, Khorramabad, Lorestan, Iran

2 Departement of Electrical Engineering, Arak University of Technology, 38181-46763, Arak, Iran

Abstract

The hybrid excitation flux switching permanent magnet (HEFSPM) motor with magnetic
bridge is a topology of hybrid excitation flux-switching PM machines. Despite its excellent performance
such as high torque/ power density, high flux enhancing/ weakening capability and so on, it has received
less attention due to its complicated structure. Therefore, its optimal design and performance all need to
be further investigated. This paper presents an optimal design of a HEFSPM motor with magnetic bridge.
At first, the machine structure and basic working principle are discussed briefly. Then, a design sensitivity
analysis for geometric optimization is carried out to improve the motor performance. This optimized
motor is compared with initial design. Finally, a prototype of the optimized proposed motor is built and
tested to validate the simulation results.

Keywords


References:
1. Hao, C., EL-Refaie, A.M., and Demerdash, N.A.O. "Flux-switching permanent magnet machines: A review of opportunities and challenges-part I: fundamentals and topologies", IEEE Trans. Energy Conver., 35(2), pp. 684-698 (2019). DOI: 10.1109/TEC.2019.2956600.
2. Zhu, X., Hua, W., and Zhang, G. "Analysis and reduction of cogging torque for  flux switching permanent magnet machines", IEEE Trans. Ind. Appl., 55(6), pp. 5854-5864 (2019). DOI: 10.1109/TIA.2019.2938721.
3. Chen, Y. and Zhou, Y. "Radial displacement sensorless control of bearingless  flux switching permanent magnet machines based on di erence of symmetric-winding flux linkages", IEEE Trans. Ind. Electron., 68(9), pp. 7793-7803 (2020). DOI: 10.1109/TIE.2020.3009575.
4. Zhu, J., Wu, L., and Wen, H. "Optimization and comparison of dual-armature  flux switching permanent magnet machines with di erent stator core shapes", IEEE Trans. Ind. Appl., 58(1), pp. 314-324 (2022). DOI: 10.1109/TIA.2021.3131300.
5. Yu, D., Yunyun, C., Jiahong, Z., et al. "Design and performance investigation of double-side hybrid excitation flux-switching machine", IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), China (2018). DOI: 10.1109/ASEMD.2018.8558914.
6. Tang, Y., Paulides, J.J.H., Motoasca, T.E., et al. "Flux-switching machine with DC excitation", IEEE Trans. Magn., 48(11), pp. 3583-3586 (2012). DOI: 10.1109/TMAG.2012.2199100.
7. Wang, Y. and Deng, Z.Q. "Analysis of electromagnetic performance and control schemes of electrical excitation flux-switching machine for DC power systems", IEEE Trans. Energy Conver., 27(4), pp. 844-855 (2012). DOI: 10.1109/TEC.2012.2215920.
8. Wang, Y. and Deng, Z. "An integration algorithm for stator  flux estimation of a Direct torque-controlled electrical excitation  flux-switching generator", IEEE Trans. Energy Conver., 27(2), pp. 411-420 (2012). DOI: 10.1109/TEC.2012.2188139.
9. Hua, W., Cheng, M., and Zhang, G. "A novel hybrid excitation  flux-switching motor for hybrid vehicles", IEEE Trans. Magn., 45(10), pp. 4728-4731 (2009). DOI: 10.1109/TMAG.2009.2022497.
10. Owen, R.L., Zhu, Z.Q., and Jewell, G.W. "Hybridexcited flux-switching permanent-magnet machines with iron  flux bridges", IEEE Trans. Magn., 46(6), pp. 1726-1729 (2010). DOI: 10.1109/TMAG.2010.2040591.
11. Hua, W., Zhang, G., and Cheng, M. "Flux-regulation theories and principles of hybrid-excited  flux-switching machines", IEEE Trans. Ind. Electron., 62(9), pp. 5359-5369 (2015). DOI: 10.1109/TIE.2015.2407863.
12. Nasr, A., Hlioui, S., Gabsi, M., et al. "Design optimization of a hybrid excited  flux switching machine for aircraft-safe DC power generation using a diode bridge rectifier", IEEE Trans. Ind. Electron., 64(12), pp. 9896-9904 (2017). DOI: 10.1109/TIE.2017.2726974.
13. Abd Rani, J., Sulaiman, E., Ahmad, M.Z., et al. "The rotor-stator study of E-core hybrid  flux switching motor", Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(2), pp. 21-25 (2018).
14. Ullah, W., Khan, F., Sulaiman, E., et al. "Analytical validation of novel consequent pole E-core stator permanent magnet  flux switching machine", IET Electr. Power Appl., 14(5), pp. 789-796 (2020). DOI: 10.1049/iet-epa.2019.0257.
15. Li, J., Wang, K., and Liu, C. "A novel E-core hybridexcited flux switching machine based on biased  flux", 20th International Conference on Electrical Machines and Systems (ICEMS), Australia (2017). DOI: 10.1109/ICEMS.2017.8056249.
16. Li, X., Shen, F., Yu, S., et al. "Flux-regulation principle and performance analysis of a novel axial partitioned stator hybrid-excitation  flux-switching machine using parallel magnetic circuit", IEEE Trans. Ind. Electron., 68(8), pp. 6560-6573 (2021). DOI: 10.1109/TIE.2020.3001807.
17. Okada, T., Matsumori, H., Kosaka, T., et al. "Hybrid excitation  flux switching motor with permanent magnet placed at middle of field coil slots and high filling factor windings", CES Transactions on Electrical Machines and Systems, 3(3), pp. 248-258 (2019). DOI: 10.30941/CESTEMS.2019.00033.
18. Otsuka, K., Okada, T., Mifune, T., et al. "Basic study on efficiency improvement of hybrid excitation  flux switching motor using variably magnetizable permanent magnets for automotive traction drives", IEEE Energy Conversion Congress and Exposition (ECCE), USA (2020). DOI: 10.1109/ECCE44975.2020.9235605.
19. Hwang, C.C., Li, P.L., and Liu, C.T. "Design and analysis of a novel hybrid excited linear  flux switching permanent magnet motor", IEEE Trans. Magn., 48(11), pp. 2969-2972 (2012). DOI: 10.1109/TMAG.2012.2195716.
20. Xu, Z., Xie, S., and Mao, P. "Analytical design of  fluxswitching hybrid excitation machine by a nonlinear magnetic circuit method", IEEE Trans. Magn., 49(6), pp. 3002-3008 (2013). DOI: 10.1109/TMAG.2012.2236566.
21. Yu, J. and Liu, C. "Multi-objective optimization of a double-stator hybrid-excited  flux-switching permanent-magnet machine", IEEE Trans. Energy Conver., 35(1), pp. 312-323 (2020). DOI: 10.1109/TEC.2019.2932953.
22. Zhu, X., Shu, Z., Quan, L., et al. "Multi-objective optimization of an outer-rotor V-shaped permanent magnet  flux switching motor based on multi-level design method", IEEE Trans. Magn., 52(10), Article Sequence Number: 8205508 (2016). DOI: 10.1109/TMAG.2016.2581767.
23. Hua, W., Cheng, M., Zhu, Z.Q., et al. "Design of  fluxswitching permanent magnet machine considering the limitation of inverter and  flux-weakening capability", Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, USA (2006). DOI: 10.1109/IAS.2006.256877.
24. Chen, J.T. and Zhu, Z.Q. "Winding configurations and optimal stator and rotor pole combination of  fluxswitching PM brushless AC machines", IEEE Trans. Energy Conver., 25(2), pp. 293-302 (2010). DOI: 10.1109/TEC.2009.2032633.
25. Krishnan, R. "Switched reluctance motor drives: modeling, simulation, analysis, design, and applications", CRC press (2017). DOI: 10.1201/9781420041644.