Entropy optimization of MHD Casson-Williamson Fluid Flow over a convectively heated stretchy sheet with Cattaneo-Christov dual Flux

Document Type : Article

Authors

1 Department of Mathematics, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, India

2 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

This work confers the comparative study of Casson-Williamson fluid flow over a heated porous stretchy sheet. The energy and mass transfer equations are modeled by Cattaneo-Christov theory. The governing flow models were altered into an ODE model with the use of suitable transformations. The HAM scheme is applied to find the series solutions. The response of diverse flow variables on fluid speed, fluid warmness, liquid concentration, skin friction coefficient, local Nusselt number, local Sherwood number, local entropy generation number and Bejan number are analyzed through graphs and charts. It is found that the fluid speed subsides when surging values of the magnetic field, porosity, Casson fluid, Williamson fluid and injection/suction parameters. The fluid warmness escalates for a high amount of radiation, convective heating and heat generation/absorption parameters and its suppresses when enriching the convective cooling parameter. The chemical reaction parameter leads to rise in the thickness of the solutal boundary layer. The higher quantity of skin friction coefficient occurs in Casson fluid compared to Williamson fluid. The local entropy generation decimates when growing the Casson and Williamson parameters and it aggravates when raising the Biot number. The Bejan number exalts when upgrading the Reynolds, Brinkman and Biot numbers.

Keywords


References:
1. Nadeem, S., Haq, R.U., Akbar, N.S., et al. "MHD three-dimensional Casson fluid  flow past a porous linearly stretching sheet", Alex. Eng. J., 52, pp. 577- 582 (2013).
2. Nadeem, S, Haq, R.U., and Lee, C. "MHD flow of a Casson fluid over an exponentially shrinking sheet", Sci. Iran., B., 19, pp. 1550-1553 (2012).
3. Shehzad, S.A., Hayat, T., Qasim, M., et al. "Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction", Braz. J. Chem. Eng., 30(01), pp. 187-195 (2013).
4. Mukhopadhyay, S., Ranjan, D.P., Bhattacharyya, K., et al. "Casson fluid flow over an unsteady stretching surface", Ain Shams Eng. J., 4, pp. 933-938 (2013).
5. Naqvi, S.M.R.S., Muhammad, T., and Asma, M. "Hydromagnetic flow of Casson nanofluid over a porous stretching cylinder with Newtonian heat and mass conditions", Phys. A: Stat. Mech. Appl.,, 550, p. 123988 (2020).
6. Pramanik, S. "Casson fluid  flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation", Ain Shams Eng. J., 5, pp. 205- 212 (2014).
7. Atif, S.M., Shah, S., and Kamran, A. "Effect of MHD on Casson fluid with Arrhenius activation energy and variable properties", Scientia Iranica, F (2022) (In Press). https://dx.doi.org/10.24200/sci.2021.57873.5452.
8. Makinde, O.D. and Gnaneswara Reddy, M. "MHD peristaltic slip flow of Casson fluid and heat transfer in channel filled with a porous medium", Scientia Iranica,, 26(4), pp. 2342-2355 (2019).
9. Kameswarn, P.K., Shaw, S., and Sibanda, P. "Dual solutions of Casson fluid flow over a stretching or shrinking sheet", Sadhana, 39, pp. 1573-1583 (2014).
10. Hamid, A., Hashim, Khan, M., and Hafeez, A. "Unsteady stagnation-point  flow of Williamson fluid generated by stretching/shrinking sheet with Ohmic heating", Int. J. Heat Mass Transf., 126, pp. 933-940 (2018).
11. Hashim, Khan, M. and Hamid, A. "Numerical investigation on time-dependent  flow of Williamson nanofluid along with heat and mass transfer characteristics past a wedge Geometry", Int. J. Heat Mass Transf., 118, pp. 480-491 (2018).
12. Shah, Z., Bonyah, E., Islam, S., et al. "Radiative MHD thin film  flow of Williamson fluid over an unsteady permeable stretching sheet", Heliyon, 4, e00825, pp. 1-20 (2018).
13. Khan, M., Salahuddin, T., Malik, M.Y., et al. "Change in viscosity of Williamson nanofluid  flow due to thermal and solutal stratification", Int. J. Heat Mass Transf., 126, pp. 941-948 (2018).
14. Zaman, S. and Gul, M. "Magnetohydrodynamic bioconvective flow of Williamson nanofluid containing gyrotactic microorganisms subjected to thermal radiation and Newtonian conditions", J. Theor. Biol., 479, pp. 22-28 (2019).
15. Shashikumar, N.S., Madhu, M., Sindhu, S., et al. "Naikoti Kishan, Thermal analysis of MHD Williamson  fluid flow through a microchannel", Int. Commun. Heat Mass Transf., 127, p. 105582 (2021).
16. Al-Sankoor, K., Al-Gayyim, H., Al-Musaedi, S., et al. "Analytically investigating of heat transfer parameters with presence of graphene oxide nanoparticles in Williamson-magnetic fluid by AGM and HPM methods", Case Stud. Therm. Eng., 27, p. 101236 (2021).
17. Bilal, M., Sagheer, M., and Hussain, S. "Numerical study of magnetohydrodynamics and thermal radiation on Williamson nanofuid flow over a stretching cylinder with variable thermal conductivity", Alex Eng J., 57, pp. 3281-3289 (2018).
18. Khan, N.A. and Khan, H. "A boundary layer flows of non-Newtonian Williamson fluid", Nonlinear Eng., 3, pp. 107-115 (2014).
19. Malik, M.Y. and Salahuddin, T. "Numerical solution of MHD stagnation point  flow of Williamson fluid model over a stretching cylinder", Int. J. Nonlin. Sci. Num., 16, pp. 161-164 (2015).
20. Nadeem, S. and Hussain, S.T. "Flow and heat transfer analysis of Williamson nanofluid", Appl. Nanosci., 4, pp. 1005-1012 (2014).
21. Upreti, H., Pandey, A.K., and Kumar, M. "MHD flow of Ag-water nanofluid over a at porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption", Alex. Eng. J., 57(3), pp. 1839-1847 (2018).
22. Zeeshan, A. and Majeed, A. "Heat transfer analysis of Jeffery fluid flow over a stretching sheet with suction/injection and magnetic dipole effect", Alex. Eng. J., 55, pp. 2171-2181 (2016).
23. Ramesh Babu, V., Sreenadh, S., and Srinivas, A.N.S. "Peristaltic transport of a viscous fluid in a porous channel with suction and injection", Ain Shams Eng. J., 9(4), pp. 909-915 (2018).
24. Bhuvaneswari, M., Eswaramoorthi, S., Sivasankaran, S., et al. "Effect of viscous dissipation and convective heating on convection flow of a second grade fluid over a stretching surface: Analytical and numerical study", Sci. Iran., B, 26(3), pp. 1350-1357 (2019).
25. Gumber, P., Yaseen, M., Rawat, S.K., et al. "Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects", Partial Differential Equations in Applied Mathematics, 5, p. 100240 (2022).
26. Mallawi, O.M., Bhuvaneswari, M., Sivasankaran, S., et al. "Impact of double-stratification on convective flow of a non-Newtonian liquid in a Riga plate with Cattaneo-Christov double-flux and thermal radiation", Ain Shams Eng. J., 12(1), pp. 969-981 (2021).
27. Noor, N.F.M., Ismoen, M., and Hashim, I. "Heattransfer analysis of MHD flow due to a permeable shrinking sheet embedded in a porous medium with internal heat generation", J. Porous Media, 13(9), pp. 847-854.
28. Noor, N.F.M. and Hashim, I. "MHD viscous  flow over a linearly stretching sheet embedded in a non-Darcian porous medium", J. Porous Media, 13(4), pp. 349-355 (2010).
29. Rana, S., Mehmood, R., and Bhatti, M.M. "Bioconvection oblique motion of magnetized Oldroyd-B  fluid through an elastic surface with suction/injection", Chin. J. Phys., 73, pp. 314-330 (2021).
30. Kasmani, R.Md., Sivasankaran, S., Bhuvaneswari, M., et al. "Soret and Dufour effects on doubly diffusive convection of nanofluid over a wedge in the presence of thermal radiation and suction", Sci. Iran., B, 26(5), pp. 2817-2826 (2019).
31. Mallawi, O.M., Eswaramoorthi, S., Bhuvaneswari, M., et al. "Impact of double-diffusion and slip of order 2 on convection of chemically reacting Oldroyd-B liquid with Cattaneo-Christov dual  flux", Ther. Sci., 25(5B), pp. 3729-3740 (2021).
32. Bejan, A. "A study of entropy generation in fundamental convective heat transfer", ASME J. Heat Transf., 101, pp. 718-725 (1979).
33. Bejan, A. "The thermodynamic design of heat and mass transfer processes and devices", Heat Fluid Flow, 8, pp. 258-276 (1987).
34. Afridi, M.I. and Qasim, M. "Entropy generation in three dimensional flow of dissipative fluid", Int. J. Appl. Comput. Math., 4, pp. 1-11 (2018).
35. Alzahrani, A.K., Sivasankaran, S., and Bhuvaneswari, M. "Numerical simulation on convection and thermal radiation of Casson fluid in an enclosure with entropy generation", Entropy, 22, p. 229 (2020).
36. Yildiz, C., Yildiz, A.E., Arici, M., et al. "Influence of dome shape on  flow structure, natural convection and entropy generation in enclosures at different inclinations: A comparative study", Int. J. Mech. Sci., 197, p. 106321 (2021).
37. Shahsavar, A., Rashidi, M., Yildiz, C., et al. "Natural convection and entropy generation of Ag-water nanofluid in a finned horizontal annulus: A particular focus on the impact of fin numbers", Int. Commun. Heat Mass Transf., 125, p. 105349 (2021).
38. Shehzad, S.A., Hayat, T., Qasim, M., et al. "Effects of mass transfer on MHD  flow of Casson fluid with chemical reaction and suction", Braz. J. Chem. Eng., 30(01), pp. 187-195 (2013).
39. Nadeem, S. and Hussain, S.T. "Analysis of MHD Williamson nano fluid flow over a heated surface", J. Appl. Fluid Mech., 9(2), pp. 729-739 (2016).
40. Bilal, S., Imtiaz Shah, M., Khan, N.Z., Akgul, A., et al. "Onset about non-isothermal flow of Williamson liquid over exponential surface by computing numerical simulation in perspective of Cattaneo Christov heat  flux theory", Alex. Eng. J., 61(8), pp. 6139-6150 (2022).
41. Ijaz Khan, M., Alzahrani, F., Hobiny, A., et al. "Modeling of Cattaneo-Christov Double Diffusions (CCDD) in Williamson nanomaterial slip  flow subject to porous medium", J Mater. Res. Technol., 9(3), pp. 6172-6177 (2020).
42. Mahmood, A., Jamshed, W., and Aziz, A. "Entropy and heat transfer analysis using Cattaneo-Christov heat  flux model for a boundary layer  flow of Casson nanofluid", Results Phys., 10, pp. 640-649 (2018).
43. Bhatti, M.M., Abbas, T., and Rashidi, M.M. "Numerical study of entropy generation with nonlinear thermal radiation on magneto hydrodynamics non-Newtonian nano fluid through a porous shrinking Sheet", J. Magn., 21(3), pp. 468-475 (2016).
44. Eswaramoorthi, S., Bhuvaneswari, M., Sivasankaran, S., et al. "Soret and Dufour effects on viscoelastic boundary layer flow, heat and mass transfer in a stretching surface with convective boundary condition in the presence of radiation and chemical reaction", Sci. Iran., B, 23(6), pp. 2575-2586 (2016).