Chaos-embedded meta-heuristic algorithms for optimal design of truss structures

Document Type : Article

Authors

1 Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, P.O. Box: 1684613114, Iran

Abstract

The success of embedded chaos in metaheuristic algorithms is mainly due to providing good balance between exploration and exploitation for metaheuristics. Comparison of optimization results with algorithms in standard mode and embedded of chaos shows a significant improvement in quality of the metaheuristic algorithms, thus reducing the weight of truss structures. Four chaos metaheuristic algorithms with logistic, Tenet and Gaussian maps are considered to improve the results. Despite truss optimization is severely nonlinear and non-convex, and often has several local optimizations, the use of different scenarios chaos allows the local optimizations to be escaped and global optimization to be achieved.

Keywords


References:
1. Kaveh, A., Advances in Meta-heuristic Algorithms for Optimal Design of Structures, 3rd Edition, Springer, Switzerland (2021). https://doi.org/10.1007/978-3-319-05549-7.
2. Kaveh, A. and Bakhshpoori, T. "Water evaporation optimization: A novel physically inspired optimization algorithm", Comput. Struct., 167, pp. 69-85 (2016).
3. Kaveh, A. and Talatahari, S. "A novel heuristic optimization method: charged system search", Acta Mech., 213, pp. 267-289 (2010).https://doi.org/10.1007/s00707-009-0270-4.
4. Kaveh, A. and Mahdavi, V.R. "Colliding bodies optimization: A novel meta-heuristic method", Comput. Struct., 139, pp. 18-27 (2014). https://doi.org/10.1016/j.compstruc.2014.04.005.
5. Kaveh, A. and Mahdavi, V.R. "Colliding bodies optimization method for optimum discrete design of truss structures", Comput. Struct., 139, pp. 43-53 (2014).
6. Kaveh, A. and Ilchi Ghazaan, M. "A new metaheuristic algorithm: vibrating particles system", Scientia Iranica, Trans. A, Civil Eng. A., 24(2), pp. 551- 566 (2017). https://doi.org/10.24200/sci.2017.2417.
7. Kaveh, A. and Dadras, A. "A novel meta-heuristic optimization algorithm: thermal exchange optimization", Adv. Eng. Softw., 110, pp. 69-84 (2017). https://doi.org/10.1016/j.advengsoft.2017.03.014.
8. Erol O.K. and Eksin, I. "New optimization method: Big Bang-Big Crunch", Adv. Eng. Softw. , 37, pp. 106- 111 (2006).
9. Kaveh, A, and Khayatazad M. "A novel meta-heuristic method: Ray optimization", Comput. Struct., 112- 113, pp. 283-294 (2012). https://doi.org/10.1016/j.compstruc.2012.09.003.
10. Lee, K.S., and Geem, Z.W. "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, pp. 781-798 (2004).
11. Kaveh, A. and Zolghadr, A. "Cyclical parthenogenesis algorithm: a new meta-heuristic algorithm", Adv. Eng. Softw., 18(5), pp. 673-701 (2017).
12. Kaveh, A. and Mahjoubi, S. "Lion pride optimization algorithm: a meta-heuristic method for global optimization problems", Scientia Iranica, Trans. A: Civil Eng., 25(6), pp. 3113-3132 (2018).
13. Kaveh, A. and Kooshkebaghi, M. "Artificial coronary circulation system; A new bio-inspired meta-heuristic algorithm", Scientia Iranica, Trans A: Civil Eng., 26(5), pp. 2731-2747 (2019).
14. Dorigo, M., Maniezzo, V., and Colorni, A. "Ant system: Optimization by a colony of cooperating agents", IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1), pp. 29-41 (Feb. 1996). DOI: 10.1109/3477.484436.
15. Mirjalili, S. and Lewis, A. "The whale optimization algorithm", Adv. Eng. Softw. 95, pp. 51-67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008.
16. Mirjalili, S., Mirjalili, S.M., and Lewis, A. "Grey wolf optimizer", Adv. Eng. Softw., 69, pp. 46-61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007.
17. Kennedy, J. and Eberhart, R. "Particle swarm optimization", In: Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, pp. 1942-1948 (1995).
18. Kaveh, A. and Zolghadr, A. "Democratic PSO for truss layout and size optimization with frequency constraints", Comput. Struct, 130, pp. 10-21 (2014). https://doi.org/10.1016/j.compstruc.2013.09.002.
19. Holland, J.H. "Adaptation in natural and artificial systems", University of Michigan Press, Ann Arbor, USA (1975).
20. Price, K.V. and Storn, R.M., Differential Evolution: A Practical Approach to Global Optimization, Springer (2005).
21. Schwefel, H.-P. "Evolutions strategy and numerical optimization", Ph.D. Thesis. Technical University Berlin (1975).
22. Eusuff, M., Lansey, K., and Pasha, F. "Shuffled frogleaping algorithm: a memetic meta-heuristic for discrete optimization", Engineering Optimization, 38(2), pp. 129-154 (2006). https://doi.org/10.1080/03052150500384759.
23. Simon D "Biogeography-based optimization", IEEE Trans. Evol. Comput., 12(6), pp. 702-713 (2008). DOI: 10.1109/TEVC.2008.919004.
24. Rao, R.V., Savsani, V.J., and Vakharia, D.P. "Teaching-learning-based optimization: a novel method for constrained mechanical design optimiz-ation problems", Comput. Aided Des., 43(3), pp. 303-315 (2011).
25. Talatahari, S., Kaveh, A., and Sheikholeslami, R. "Chaotic imperialist competitive algorithm for optimum design of truss structures", Struct. Multidiscip. Optim., 46(3), pp. 355-67 (2012).
26. Kaveh, A. and Vazirinia, Y. "Chaotic vibrating particles system for resource-constrained project scheduling problem", Scientia Iranica, Trans. A: Civil Eng., 27(4), pp. 1826-1842 (2020).
27. Peitgen, H.-O., Jorgens, H., and Saupe, D. "Chaos and Fractals", New Frontiers of Science., Springer, Berlin (2006).
28. Kaveh, A., Sheikholeslami, R., Talatahari, S., et al. "Chaotic swarming of particles: a new method for size optimization of truss structures", Adv. Eng. Softw. 67, pp. 136-47 (2014).
29. Lee, K.S., Han, S.W., and Geem, Z.W. "Discrete size and discrete-continuous configuration optimization methods for truss structures using the harmony search algorithm", Int. J. Optim. Civil Eng., 1, pp. 107-26 (2011).
30. Kaveh, A. and Ilchi Ghazaan, M. "Enhanced colliding bodies optimization for design problems with continuous and discrete variables", Adv. Eng. Softw., 77, pp. 66-75 (2014). https://doi.org/10.1016/j.advengsoft.2014.08.003.
31. Kaveh, A. and Talatahari, S. "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87, pp. 267-283 (2009).
32. Kaveh, A. and Khayatazad, M. "Ray optimization for size and shape optimization of truss structures", Comput. Struct., 117, pp. 82-94 (2013).
33. Kaveh, A. and Javadi, S.M. "Chaos-based fire y for optimization of cyclically large-size braced steel domes with multiple frequency constraints", Comput. Struct., 214, pp. 28-39 (2019). https://doi.org/10.1016/j.compstruc.2019.01.006.
34. Kaveh, A., Mottaghi, L., and Izadifard, R.A. "An integrated method for sustainable performance-based optimal seismic design of RC frames with non-prismatic beams", Scientia Iranica, Trans. A: Civil Eng., 28(5), pp. 2596-2612 (2021). http://scientiairanica.sharif.edu.
35. Kaveh, A. and Rahami, H. "Analysis, design and optimization of structures using force method and genetic algorithm", Int. J. Numer. Methods Eng., 65(10), pp. 1570-1584 (2006). DOI: 10.1002/nme.1506.
36. Fan, W., Chen, Y., Li, J., et al. "Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications", Structures, 33, pp. 3954-3963 (2021). DOI: 10.1016/j.istruc.2021.06.110.
Volume 29, Issue 6
Transactions on Civil Engineering (A)
November and December 2022
Pages 2868-2885
  • Receive Date: 22 January 2022
  • Revise Date: 18 February 2022
  • Accept Date: 08 May 2022