1. Lahidji, R., Michalski, W., and Stevens, B. "The long term future for energy", In Energy: The Next Fifty Years, OECD Ed., 1st Edn., Paris, pp. 7-28 (1999).
2. Stroe, D., Swierczy, M., Stan, A., et al. "Accelerated lifetime testing methodology for lifetime estimation of lithium-ion batteries used in augmented wind power plants", IEEE Trans. Ind. Appl., 50(6), pp. 4006-4017 (2014).
3. Ling, Z., Wang, F., Fang, X., et al. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling", Appl. Energy, 148(C), pp. 403-409 (2015).
4. Ritchie, A. and Howard, W. "Recent developments and likely advances in lithium-ion batteries", J. Power. Sources, 162(2), pp. 809-812 (2006).
5. Ye, Y., Saw, L.H., Shi, Y., et al. "Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging", Appl. Therm. Energy, 86(C), pp. 281-291 (2015).
6. Xing, Y., Miao, Q., Tsui, K.L., et al. "Prognostics and health monitoring for lithium-ion battery", IEEE Int. Conf. on Intel. and Secu. Informatics, Beijing, China, pp. 242-247 (2011).
7. Lawson, S., The Note7 will Cost Samsung Another US$3 Billion in Profit, PC Worlds News (2016).
https://www.pcworld.idg.com.au/article/608533/ note7-will-cost-samsung-another-3-billion-profit/.
8. Goebel, K., Saha, B., Saxena, A., et al. "Prognostics in battery health management", IEEE Instrum. Meas. Mag., 11(4), pp. 33-40 (2008).
9. He, W., Williard, N., Osterman, M., et al. "Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method", J. Power Sources, 196(23), pp. 10314-10321 (2011).
10. Parthiban, Th., Ravi, R., and Kalaiselvi, N. "Exploration of artificial neural network [ANN] to predict the electrochemical characteristics of lithium-ion cells", Electr. Acta, 53(4), pp. 1877-1882 (2007).
11. Sbarufatti, C., Corbetta, M., Giglio, M., et al. "Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks", J. Power Sources, 344, pp. 128-140 (2017).
12. He, W., Williard, N., Chen, Ch., et al."State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation", Int. J. Elec. Power and Energy. Syst., 62, pp. 783-791 (2014).
13. Wang, L.K., Zhao, X., and Ma, J. "A new neural network model for the state-of-charge estimation in the battery degradation process", Appl. Energy., 121(C), pp. 20-27 (2014).
14. Chaoui, H., Ibe-Ekeoch, Ch.C., and Gualous, H. "Aging prediction and state of charge estimation of a LiFePO4 battery using input time-delayed neural networks", Elec. Power Syst. Res., 146, pp. 189-197 (2017).
15. Guo, Y., Zhao, Z., and Huang, L. "SOC estimation of lithium battery based on improved BP neural network", Energy Procedia, 105, pp. 4153-4158 (2017).
16. Yang, D., Wang, Y., Pan, R., et al. "A neural network based state-of-health estimation of lithium-ion battery in electric vehicles", Energy Procedia, 105, pp. 2059- 2064 (2017).
17. Dong, G., Zhang, Xu., Zhang, Ch., et al. "A method for state of energy estimation of lithium-ion batteries based on neural network model", Energy, 90(p1), pp. 879-888 (2015).
18. Chang, W.Y. "Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA", Int. J. Elec. Power and Energy Syst., 53, pp. 603-611 (2013).
19. Somasundaram, K., Birgersson, E., and Mujumdar, A.S. "Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery", J. Power Sources, 203, pp. 84-96 (2012).
20. Sbarufatti, C., Corbetta, M., Giglio, M., et al. "Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks", J. Power Sources, 344, pp. 128-140 (2017).
21. Wang, Zh., Ma, J., and Zhang, L. "Finite element thermal model and simulation for a cylindrical Li-Ion battery", IEEE Access, 5, pp. 15372-15379 (2017).
22. Cicconi, P., Landi, D., and Germani, M. "Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV", Applied Energy, 192(C), pp. 159-177 (2017).
23. Bernardi, D., Pawlikowski, E., and Newman, J. "A general energy balance for battery systems", J. Electr. Society, 132(1), pp. 5-12 (1985).
24. Karimi, G. and Li, X. "Thermal management of lithium-ion batteries for electric vehicles", Int. J. Energy Res., 37(1), pp. 13-24 (2013).
25. Abdul-Quadir, Y., Laurila, T., Karppinen, J., et al. "Heat generation in high power prismatic Li-ion battery cell with LiMnNiCoO2 cathode material", Int. J. Energy Res., 38(11), pp. 1424-1437 (2014).
26. Bandhauer, T.M., Garimella, S., and Fuller, T.F. "A critical review of thermal issues in lithium-ion batteries", J. Elect. Society, 158(3), pp. R1-R25 (2011).
27. Wasserman, P.D. "Fundamentals of artificial neural networks", In Neural Computing Theory and Practice, Van Nostrant Reinhold Ed., 1st Edn., New York, pp. 11-27 (1989).
28. Beale, R. and Jackson, T. "The basic neoron", In Neural Computing: An Introduction, Teylor and Francis Croup LLC, 1st Edn., New York, pp. 39-57 (1990).
29. Levenberg, K. "A method for the solution of certain problems in least squares", SIAM J. Numer. Anal., 16, pp. 588-604 (1944).
30. Marquardt, D. "An algorithm for least-squares estimation of nonlinear parameters", SIAM J. Appl. Math., 11, pp. 431-441 (1963).
31. Hagan, M.T. and Menhaj, M. "Training feedforward networks with the Marquardt algorithm", IEEE Trans. Neural Netw., 5(6), pp. 989-993 (1994).
32. Hagan, M.T., Demuth, H.B., Beale, M.H., et al., Neural Network Design, Martin Hagan Ed., 2nd Edn., Singapore, pp. 37-43 (2014).
33. Masters, T., Advanced Algorithms for Neural Networks: a C++ Sourcebook, John Wiley & Sons, 1st Edn., UK (1995).
34. Katz, J.O. "Developing neural network forecasters for trading", Tech. Anal. Stocks Commod., 10(4), pp. 160- 168 (1992).
35. Prechelt, L. "Automatic early stopping using cross validation: quantifying the criteria", Neural Networks, 11, pp. 761-767 (1998).