References:
1. Boysen, N., Fedtke, S., and Schwerdfeger, S. "Lastmile delivery concepts: a survey from an operational research perspective", OR Spectrum, 43(1), pp. 1-58 (Sep. 2020). DOI: 10.1007/s00291-020-00607-8.
2. Karaca, Y., Cicek, M., Tatli, O., et al. "The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations", The American Journal of Emergency Medicine, 36(4), pp. 583-588 (Apr. 2018). DOI: 10.1016/j.ajem.2017.09.025.
3. Pulver, A. and Wei, R. "Optimizing the spatial location of medical drones", Applied Geography, 90, pp. 9-16 (Jan. 2018). DOI: 10.1016/j.apgeog.2017.11.009.
4. Rabta, B., Wankmuller, C., and Reiner, G. "A drone fleet model for last-mile distribution in disaster relief operations", International Journal of Disaster Risk Reduction, 28, pp. 107-112 (Jun. 2018). DOI: 10.1016/j.ijdrr.2018.02.020.
5. Thiels, C.A., Aho, J.M., Zietlow, S.P., et al. "Use of unmanned aerial vehicles for medical product transport", Air Medical Journal, 34(2), pp. 104-108 (Mar. 2015). DOI: 10.1016/j.amj.2014.10.011.
6. Dorling, K., Heinrichs, J., Messier, G.G., et al. "Vehicle routing problems for drone delivery", IEEE Trans. Syst. Man Cybern, Syst., 47(1), pp. 70-85 (Jan. 2017). DOI: 10.1109/TSMC.2016.2582745.
7. Gong, D.-C., Chen, P.-S., and Lu, T.-Y. "Multiobjective optimization of green supply chain network designs for transportation mode selection", Scientia Iranica, 24(6), pp. 3355-3370 (Sep. 2017). DOI: 10.24200/sci.2017.4403.
8. Mohtashami, Z., Aghsami, A., and Jolai, F. "A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption", Journal of Cleaner Production, 242, p. 118452 (Jan. 2020). DOI: https://doi.org/10.1016/j.jclepro.2019.118452.
9. Figliozzi, M.A. "Lifecycle modeling and assessment of unmanned aerial vehicles (Drones) CO2e emissions", Transportation Research Part D: Transport and Environment, 57, pp. 251-261 (Dec. 2017). DOI: 10.1016/j.trd.2017.09.011.
10. Park, J., Kim, S., and Suh, K. "A comparative analysis of the environmental benefits of drone-based delivery services in urban and rural areas", Sustainability, 10(3), p. 888 (Mar. 2018). DOI: 10.3390/su10030888.
11. Chiang, W.-C., Li, Y., Shang, J., et al. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization", Applied Energy, 242, pp. 1164-1175 (May 2019). DOI: 10.1016/j.apenergy.2019.03.117.
12. Chung, S.H., Sah, B., and Lee, J. "Optimization for drone and drone-truck combined operations: A review of the state of the art and future directions", Computers & Operations Research, 123, p. 105004 (Nov. 2020). DOI: 10.1016/j.cor.2020.105004.
13. Iranian tech minister posts video-tweet of Iran Post drone delivery trial, bne IntelliNews, December 15, 2019, accessed January 28, (2021), https://www.intellinews.com.
14. Delivery of goods by UAV; Efforts made and challenges ahead, DigikalaMAG, December 12, 2019, accessed January 28, (2021), https://www.digikala.com/mag.
15. Otto, A., Agatz, N., Campbell, J., et al. "Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey", Networks, 72(4), pp. 411-458 (Dec. 2018). DOI: 10.1002/net.21818.
16. Rojas Viloria, D., Solano-Charris, E.L., Munoz- Villamizar, A., et al. "Unmanned aerial vehicles/ drones in vehicle routing problems: a literature review", Intl. Trans. in Op. Res., 28(4), pp. 1626-1657 (Mar. 2020). DOI: 10.1111/itor.12783.
17. Macrina, G., Di Puglia Pugliese, L., Guerriero, F., et al. "Drone-aided routing: A literature review", Transportation Research Part C: Emerging Technologies, 120, p. 102762 (Nov. 2020). DOI: 10.1016/j.trc.2020.102762.
18. Sundar, K. and Rathinam, S. "Algorithms for routing an unmanned aerial vehicle in the presence of refueling depots", IEEE Trans. Automat. Sci. Eng., 11(1), pp. 287-294 (Jan. 2014). DOI: 10.1109/TASE.2013.2279544.
19. Kim, S.J., Lim, G.J., and Cho, J. "Drone flight scheduling under uncertainty on battery duration and air temperature", Computers & Industrial Engineering, 117, pp. 291-302 (Mar. 2018). DOI: 10.1016/j.cie.2018.02.005.
20. Murray, C.C. and Chu, A.G. "The flying sidekick traveling salesman problem: Optimization of droneassisted parcel delivery", Transportation Research Part C: Emerging Technologies, 54, pp. 86-109 (May 2015). DOI: 10.1016/j.trc.2015.03.005.
21. Ha, Q.M., Deville, Y., Pham, Q.D., et al. "On the mincost traveling aslesman problem with drone", Transportation Research Part C: Emerging Technologies, 86, pp. 597-621 (Jan. 2018). DOI: 10.1016/j.trc.2017.11.015.
22. Agatz, N., Bouman, P., and Schmidt, M. "Optimization approaches for the traveling salesman problem with drone", Transportation Science, 52(4), pp. 965- 981 (2018).
23. Schermer, D., Moeini, M., and Wendt, O. "The traveling salesman drone station location problem", in Optimization of Complex Systems: Theory, Models, Algorithms and Applications, 991, H. A. Le Thi, H. M. Le, and T. Pham Dinh, Eds. Cham: Springer International Publishing, pp. 1129-1138 (2020).
24. Murray, C.C. and Raj, R. "The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones", Transportation Research Part C: Emerging Technologies, 110, pp. 368-398 (Jan. 2020). DOI: 10.1016/j.trc.2019.11.003.
25. Carlsson, J.G. and Song, S. "Coordinated logistics with a truck and a drone", Management Science, 64(9), pp. 4052-4069 (Sep. 2018). DOI: 10.1287/mnsc.2017.2824.
26. Moshref-Javadi, M., Hemmati, A., and Winkenbach, M. "A truck and drones model for last-mile delivery: A mathematical model and heuristic approach", Applied Mathematical Modelling, 80, pp. 290-318 (Apr. 2020). DOI: 10.1016/j.apm.2019.11.020.
27. Moshref-Javadi, M., Lee, S., and Winkenbach, M. "Design and evaluation of a multi-trip delivery model with truck and drones", Transportation Research Part E: Logistics and Transportation Review, 136, p. 101887 (Apr. 2020). DOI: 10.1016/j.tre.2020.101887.
28. Salama, M. and Srinivas, S. "Joint optimization of customer location clustering and drone-based routing for last-mile deliveries", Transportation Research Part C: Emerging Technologies, 114, pp. 620-642 (May 2020). DOI: 10.1016/j.trc.2020.01.019.
29. Kitjacharoenchai, P., Min, B.-C., and Lee, S. "Two echelon vehicle routing problem with drones in last mile delivery", International Journal of Production Economics, 225, p. 107598 (Jul. 2020). DOI: 10.1016/j.ijpe.2019.107598.
30. Shavarani, S.M., Golabi, M., and Izbirak, G. "A capacitated biobjective location problem with uniformly distributed demands in the UAV-supported delivery operation", Intl. Trans. in Op. Res., 28(6), pp. 3220- 3243 (Oct. 2019). DOI: 10.1111/itor.12735.
31. Golabi, M., Shavarani, S.M., and Izbirak, G. "An edgebased stochastic facility location problem in UAVsupported humanitarian relief logistics: a case study of Tehran earthquake", Nat Hazards, 87, pp. 1545-1565 (2017).
32. Shavarani, S.M., Mosallaeipour, S., Golabi, M., et al. "A congested capacitated multi-level fuzzy facility location problem: An ecient drone delivery system", Computers & Operations Research, 108, pp. 57-68 (Aug. 2019). DOI: 10.1016/j.cor.2019.04.001.
33. Hong, I., Kuby, M., and Murray, A.T. "A rangerestricted recharging station coverage model for drone delivery service planning", Transportation Research Part C: Emerging Technologies, 90, pp. 198-212 (May 2018). DOI: 10.1016/j.trc.2018.02.017.
34. Kim, S.J., Lim, G.J., Cho, J., et al. "Drone-aided healthcare services for patients with chronic diseases in rural areas", J Intell Robot Syst, 88, pp. 163-180 (2017).
35. Dukkanci, O., Kara, B.Y., and Bektas, T. "Minimizing energy and cost in range-limited drone deliveries with speed optimization", Transportation Research Part C: Emerging Technologies, 125, p. 102985 (Apr. 2021). DOI: 10.1016/j.trc.2021.102985.
36. Chauhan, D., Unnikrishnan, A., and Figliozzi, M. "Maximum coverage capacitated facility location problem with range constrained drones", Transportation Research Part C: Emerging Technologies, 99, pp. 1- 18 (Feb. 2019). DOI: 10.1016/j.trc.2018.12.001.
37. Chauhan, D.R., Unnikrishnan, A., Figliozzi, M., et al. "Robust maximum coverage facility location problem with drones considering uncertainties in battery vaailability and consumption", Transportation Research Record, 99, pp. 1-18 (Dec. 2020). DOI:10.1177/0361198120968094.
38. Kim, D., Lee, K., and Moon, I. "Stochastic facility location model for drones considering uncertain flight distance", Annals of Operations Research, 283, pp. 1283-1302 (2019).
39. Chen, H., Hu, Z., and Solak, S. "Improved delivery policies for future drone-based delivery systems", European Journal of Operational Research, 294(3), pp. 1181-1201 (Nov. 2021). DOI: 10.1016/j.ejor.2021.02.039.
40. Rohaninejad, M., Sahraeian, R., and Tavakkoli- Moghaddam, R. "An accelerated Benders decomposition algorithm for reliable facility location problems in multi-echelon networks", Computers & Industrial Engineering, 124, pp. 523-534 (Oct. 2018). DOI: 10.1016/j.cie.2018.07.047.
41. Korani, E., Eydi, A., and Nakhai Kamalabadi, I. "Reliable hierarchical multimodal hub location problem: Models and lagrangian relaxation algorithm", Scientia Iranica, 27(3), pp. 1525-1543 (May. 2020), DOI: 10.24200/sci.2018.50797.1870.
42. Afify, B., Ray, S., Soeanu, A., et al. "Evolutionary learning algorithm for reliable facility location under disruption", Expert Systems with Applications, 115, pp. 223-244 (Jan. 2019).DOI: 10.1016/j.eswa.2018.07.045.
43. Rabbani, M., Aghamohammadi Bosjin, S., Yazdanparast, R., et al. "A stochastic time-dependent green capacitated vehicle routing and scheduling problem with time window, resiliency and reliability: a case study", 7(4), pp. 381-394 (2018). DOI: 10.5267/j.dsl.2018.2.002.
44. Amini, A. and Tavakkoli-Moghaddam, R. "A biobjective truck scheduling problem in a cross-docking center with probability of breakdown for trucks", Computers & Industrial Engineering, 96, pp. 180-191 (Jun. 2016). DOI: 10.1016/j.cie.2016.03.023.
45. Mousazadeh, M., Torabi, S.A., and Zahiri, B. "A robust possibilistic programming approach for pharmaceutical supply chain network design", Computers & Chemical Engineering, 82, pp. 115-128 (Nov. 2015). DOI: 10.1016/j.compchemeng.2015.06.008.
46. Gitinavard, H., Ghodsypour, S.H., and Akbarpour Shirazi, M. "A bi-objective multi-echelon supply chain model with Pareto optimal points evaluation for perishable products under uncertainty", Scientia Iranica, 26(5), pp. 2952-2970 (Jul. 2018). DOI: 10.24200/sci.2018.5047.1060.
47. Pourmohammadi, F., Teimoury, E., and Gholamian, M.R. "A fuzzy chance-constrained programming model for integrated planning of the wheat supply chain considering wheat quality and sleep period: a case study", Scientia Iranica, 29(5), pp. 2593-2609 (Oct. 2020). DOI: 0.24200/sci.2020.53772.3404.
48. Pishvaee, M.S., Razmi, J., and Torabi, S.A. "Robust possibilistic programming for socially responsible supply chain network design: A new approach", Fuzzy Sets and Systems, 206, pp. 1-20 (Nov. 2012). DOI:10.1016/j.fss.2012.04.010.
49. Charnes, A. and Cooper, W.W. "Chance-constrained programming", Management Science, 6(1), pp. 73-79 (Oct. 1959). DOI: 10.1287/mnsc.6.1.73.
50. Nourzadeh, F., Ebrahimnejad, S., Khalili-Damghani, K., et al. "Chance constrained programming and robust optimization approaches for uncertain hub location problem in a cooperative competitive environment", Scientia Iranica, 29(4), pp. 2149-2165 (Sep. 2020). DOI: 10.24200/sci.2020.54072.3573.
51. Shen, J. "An e-commerce facility location problem under uncertainty", Scientia Iranica (May 2019). DOI: 10.24200/sci.2019.50437.1692.
52. Shaw, K., Irfan, M., Shankar, R., et al. "Low carbon chance constrained supply chain network design problem: a Benders decomposition based approach", Computers & Industrial Engineering, 98, pp. 483-497 (Aug. 2016). DOI: 10.1016/j.cie.2016.06.011.
53. Mavrotas, G. "Effective implementation of the "-constraint method in multi-objective mathematical programming problems", Applied Mathematics and Computation, 213(2), pp. 455-465 (Jul. 2009). DOI: 10.1016/j.amc.2009.03.037.
54. Mavrotas, G. and Florios, K. "An improved version of the augmented "-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems", Applied Mathematics and Computation, 219(18), pp. 9652-9669 (May 2013). DOI: 10.1016/j.amc.2013.03.002.
55. Asefi, H., Shahparvari, S., Chhetri, P., et al. "Variable fleet size and mix VRP with fleet heterogeneity in integrated solid waste management", Journal of Cleaner Production, 230, pp. 1376-1395 (Sep. 2019). DOI: 10.1016/j.jclepro.2019.04.250.
56. Digikala Indices, 2020, available: discopp.com/Digikala statistics98.
57. Shafiee Moghadam, S., Aghsami, A., and Rabbani, M. "A hybrid NSGA-II algorithm for the closedloop supply chain network design in e-commerce", RAIRO-Operations Research, 55(3), pp. 1643-1674 (Jun. 2021). DOI: 10.1051/ro/2021068.
58. Digikala open data mining program, available: https://www.digikala.com/opendata/.
59. Ochieng, W.O., Ye, T., Scheel, C., et al. "Uncrewed aircraft systems versus motorcycles to deliver laboratory samples in west Africa: A comparative economic study", The Lancet Global Health, 8(1), pp. e143-e151 (2020).Ochieng, W.O. "Uncrewed aircraft systems versus motorcycles to deliver laboratory samples in west Africa: A comparative economic study", 8, p. 9 (2020).
60. Aghsami, A. and Jolai, F. "Equilibrium threshold strategies and social benefits in the fully observable Markovian queues with partial breakdowns and interruptible setup/closedown policy", Quality Technology & Quantitative Management, 17(6), pp. 685-722 (Mar 2020). DOI: 10.1080/16843703.2020.1736365.