References:
1. Bartolo, J.B., Degano, M., Espina, J., et al. "Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application", IEEE Trans. Ind. Electron., 64(2), pp. 988-997 (2017). DOI: 10.1109/TIE.2016.2618342.
2. Bostanci, E., Moallem, M., Parsapour, A., et al. "Opportunities and challenges of switched reluctance motor drives for electric propulsion: A comparative study", IEEE Trans. Transp. Electrif., 3(1), pp. 58-75 (2017). DOI: 10.1109/TTE.2017.2649883.
3. Naseh, M., Hasanzadeh, S., Dehghan, S.M., et al. "Optimized design of rotor barriers in pm-assisted synchronous reluctance machines with taguchi method", IEEE Access, 10, pp. 38165-38173 (2022). DOI: 10.1109/ACCESS.2022.3165549.
4. Ding, W., Hu, Y., Wang, T., et al. "Comprehensive research of modular E-core stator hybrid- flux switched reluctance motors with segmented and nonsegmented rotors", IEEE Trans. Energy Convers., 32(1), pp. 382- 393 (2017). DOI: 10.1109/TEC.2016.2631248.
5. Ding, W., Yang, S., and Hu, Y. "Development and investigation on segmented-stator hybrid-excitation switched reluctance machines with different rotor pole numbers", IEEE Trans. Ind. Electron., 65(5), pp. 3784-3794 (2018). DOI: 10.1109/TIE.2017.2760846.
6. Ding, W., Yang, S., Hu, Y., et al. "Design consideration and evaluation of a 12/8 high-torque modularstator hybrid excitation switched reluctance machine for EV applications", IEEE Trans. Ind. Electron., 64(12), pp. 9221-9232 (2017). DOI: 10.1109/TIE.2017.2711574.
7. Shirali, E., Hasanzadeh, S., and Dehghan, S.M. "FEMaided analytical model and control of SSLFSM thrust force", Comput. Intell. Electr. Eng., 11(2), pp. 87-94 (2020). DOI: 10.22108/ISEE.2019.114726.1189.
8. Mousavi-Aghdam, S.R., Feyzi, M.R., Bianchi, N., et al. "Design and analysis of a novel high-torque statorsegmented SRM", IEEE Trans. Ind. Electron., 63(3), pp. 1458-1466 (2016). DOI: 10.1109/TIE.2015.2494531.
9. Zhu, J., Cheng, K.W.E., and Xue, X. "Design and analysis of a new enhanced torque hybrid switched reluctance motor", IEEE Trans. Energy Convers., 33(33), pp. 1965-1977 (2018). DOI: 10.1109/TEC.2018.2876306.
10. Diao, K., Sun, X., Lei, G., et al. "Multimode optimization of switched reluctance machines in hybrid electric vehicles", IEEE Trans. Energy Convers., 36, pp. 2217- 2226 (2021). DOI: 10.1109/TEC.2020.3046721.
11. Mehta, S., Kabir, M.A., Pramod, P., et al. "Segmented rotor mutually coupled switched reluctance machine for low torque ripple applications", IEEE Trans. Ind. Appl., 57(4), pp. 3582-3594 (2021). DOI:10.1109/TIA.2021.3073384.
12. Xiang, Z., Quan, L., and Zhu, X. "A new partitionedrotor flux-switching permanent magnet motor with high torque density and improved magnet utilization", IEEE Trans. Appl. Supercond., 26(4), pp. 1-5 (2016). DOI: 0.1109/TASC.2016.2514486.
13. Sikder, C., Husain, I., and Ouyang, W. "Cogging torque reduction in flux-switching permanentmagnet machines by rotor pole shaping", IEEE Trans. Ind. Appl., 51(5), pp. 3609-3619 (2015). DOI: 10.1109/TIA.2015.2416238.
14. Esfahanian, H.R., Hasanzadeh, S., Heydari, M., et al. "Design, optimization, and control of a linear tubular machine integrated with levitation and guidance for maglev applications", Sci. Iran., 30(4), pp. 1330-1341 (2023). DOI: 10.24200/SCI.2021.57416.5231.
15. Hasanzadeh, S., Rezaei, H., and Qiyassi, E. "Analysis and optimization of permanent magnet dimensions in electrodynamic suspension systems", J. Electr. Eng. Technol., 13(1), pp. 307-314 (2018). DOI: 10.5370/JEET.2018.13.1.307.