References:
1. Biglari, M., Soleimani, A., and Hassanpour, H. "A cascaded part-based system for fine-grained vehicle classification", IEEE Transactions on Intelligent Transportation Systems, 19(1), pp. 273-283 (2018). DOI: 10.1109/TITS.2017.2749961.
2. Ma, Z., Chang, D., Xie, J., et al. "Fine-grained vehicle classification with channel max pooling modified CNNs", IEEE Transactions on Vehicular Technology, 68(4), pp. 3224-3233 (2019).DOI: 10.1109/TVT.2019.2899972.
3. Wang, J., Zheng, H., Huang, Y., et al. "Vehicle type recognition in surveillance images from labeled web-nature data using deep transfer learning", IEEE Transactions on Intelligent Transportation Systems, 19(9), pp. 2913-2922 (2018). DOI: 10.1109/TITS.2017.2765676.
4. Huang, Y., Wu, R., Sun, Y., et al. "Vehicle logo recognition system based on convolutional neural networks with a pretraining strategy", IEEE Transactions on Intelligent Transportation Systems, 16(4), pp. 1951- 1960 (2015). DOI: 10.1109/TITS.2014.2387069.
5. Psyllos, A.P., Anagnostopoulos, C.-N.E., and Kayafas, E. "Vehicle logo recognition using a SIFT-based enhanced matching scheme", IEEE Transactions on Intelligent Transportation Systems, 11(2), pp. 322-328 (2010). DOI: 10.1109/TITS.2010.2042714.
6. Zhang, J., Xiao, W., Coifman, B., et al. "Vehicle tracking and speed estimation from roadside lidar", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, pp. 5597-5608 (2020). DOI: 10.1109/JSTARS.2020.3024921.
7. Nazemi, A., Azimifar, Z., Shafiee, M.J., et al. "Realtime vehicle make and model recognition using unsupervised feature learning", IEEE Transactions on Intelligent Transportation Systems, 21(7), pp. 3080- 3090 (2020). DOI: 10.1109/TITS.2019.2924830.
8. Cai, D., Chen, K., Qian, Y., et al. "Convolutional low-resolution fine-grained classification", Pattern Recognition Letters, 119, pp. 166-171 (2019). DOI: 10.1016/j.patrec.2017.10.020.
9. Ni, X. and Huttunen, H. "Vehicle attribute recognition by appearance: Computer vision methods for vehicle type, make and model classification", Journal of Signal Processing Systems, 93(4), pp. 357-368 (2020). DOI: 10.1007/s11265-020-01567-6.
10. Soon, F.C., Khaw, H.Y., Chuah, J.H., et al. "PCANetbased convolutional neural network architecture for a vehicle model recognition system", IEEE Transactions on Intelligent Transportation Systems, 20(2), pp. 749- 759 (2019). DOI: 10.1109/TITS.2018.2833620.
11. Ren, S., He, K., Girshick, R., et al. "Faster RCNN: Towards real-time object detection with region proposal networks", IEEE Trans Pattern Anal Mach Intell, 39(6), pp. 1137-1149 (2017). DOI: 10.1109/TPAMI.2016.2577031.
12. Yang, L., Luo, P., Change Loy, C., et al. "A largescale car dataset for fine-grained categorization and verification", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3973- 3981 (2015). DOI: 10.1109/CVPR.2015.7299023.
13. Gholamalinejad, H. and Khosravi, H. "IRVD: A largescale dataset for classification of Iranian vehicles in urban streets", Journal of AI and Data Mining, 9(1), pp. 1-9 (2021). DOI: 10.22044/jadm.2020.8438.1982.
14. Yu, S., Wu, Y., Li, W., et al. "A model for finegrained vehicle classification based on deep learning", Neurocomputing, 257, pp. 97-103 (2017). DOI: 10.1016/j.neucom.2016.09.116.
15. Sochor, J., Herout, A., and Havel, J. "BoxCars: 3D boxes as CNN input for improved fine-grained vehicle recognition", 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3006- 3015 (2016). DOI: 10.1109/CVPR.2016.328.
16. Sochor, J., Spanhel, J., and Herout, A. "BoxCars: Improving fine-grained recognition of vehicles using 3- D bounding boxes in traffic surveillance", IEEE Transactions on Intelligent Transportation Systems, 20(1), pp. 97-108 (2019). DOI: 10.1109/TITS.2018.2799228.
17. Huang, Y., Liang, B., Xie, W., et al. "Dual domain multi-task model for vehicle re-identification", IEEE Transactions on Intelligent Transportation Systems, 23(4), pp. 1-9 (2020). DOI: 10.1109/TITS.2020.3027578.
18. Simonyan, K. and Zisserman, A. "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556. (2014).
19. Liu, R., Yuan, Z., and Liu, T. "Learning TBox with a cascaded anchor-free network for vehicle detection", IEEE Transactions on Intelligent Transportation Systems, 23(1), pp. 1-12 (2020). DOI: 10.1109/TITS.2020.3010523.
20. Meng, D., Li, L., Liu, X., et al. "Parsing-based viewaware embedding network for vehicle re-identification", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7103-7112 (2020). DOI: 10.1109/CVPR42600.2020.00713.
21. Liu, H., Tian, Y., Yang, Y., et al. "Deep relative distance learning: Tell the difference between similar vehicles", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2167- 2175 (2016). DOI: 10.1109/CVPR.2016.238.
22. Zhu, X., Luo, Z., Fu, P., et al. "VOC-ReID: Vehicle re-identification based on vehicle-orientation-camera", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 602-603 (2020). DOI: 10.1109/CVPRW50498.2020.00309.
23. Hsieh, J.-W., Chen, L.-C., and Chen, D.-Y. "Symmetrical SURF and its applications to vehicle detection and vehicle make and model recognition", IEEE Transactions on Intelligent Transportation Systems, 15(1), pp. 6-20 (2014). DOI: 10.1109/TITS.2013.2294646.
24. Biglari, M., Soleimani, A., and Hassanpour, H. "Partbased recognition of vehicle make and model", IET Image Processing, 11(7), pp. 483-491 (2017). DOI: 10.1049/iet-ipr.2016.0969.
25. Madden, M. and Munroe, D.T., Multi-Class and Single-Class Classification Approaches to Vehicle Model Recognition from Images, Proc. AICS (2005).
26. Boonsim, N. and Prakoonwit, S. "Car make and model recognition under limited lighting conditions at night", Pattern Analysis and Applications, 20(4), pp. 1195- 1207 (2016). DOI: 10.1007/s10044-016-0559-6.
27. Sarfraz, M.S. and Khan, M.H., A Probabilistic Framework for Patch based Vehicle Type Recognition, Visapp. 1 (2011).
28. Asgarian Dehkordi, R. and Khosravi, H. "Vehicle type recognition based on dimension estimation and bag of word classification", Journal of AI and Data Mining, 8(3), pp. 427-438 (2020). DOI: 10.22044/JADM.2020.8375.1975.
29. Howard, A.G., Zhu, M., Chen, B., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv preprint arXiv:1704.04861. (2017). DOI: 10.48550/arXiv.1704.04861.
30. Tan, M. and Le, Q. "Efficientnet: Rethinking model scaling for convolutional neural networks", International Conference on Machine Learning. PMLR, pp. 6105-6114 (2019).
31. Nagy, B., Foehn, P., and Scaramuzza, D., Faster than FAST: GPU-Accelerated Frontend for High-Speed VIO, arXiv preprint arXiv:2003.13493. (2020). DOI: 10.1109/IROS45743.2020.9340851.