A new hybrid analytical model based on winding function theory for analysis of unbalanced two-phase induction motors

Document Type : Article

Authors

1 Departement of Electrical Engineering, Lorestan University, 68151-44316, Khorramabad, Lorestan, Iran

2 Departement of Civil Engineering, Lorestan University, 68151-44316, Khorramabad, Lorestan, Iran

Abstract

The purpose of this paper is to present a new hybrid analytical model (HAM) based on winding function theory (WFT) for electromagnetic analysis of performance of one typical unbalanced two-phase induction motor (UTPIM). Different indexes of electromagnetic modeling such as winding distribution, slotting effect, and magnetic saturation can be accurately considered by using the proposed HAM. For obtaining this new hybrid technique, the winding function theory is reformulated for considering the magnetic saturation in addition to the influence of slotting and winding distribution. The conformal mappings (CMs) are used to accurately calculate the slotted air-gap length. The magnetic equivalent circuit (MEC) model is used to consider the magneto-motive force (MMF) drop in iron parts of stator and rotor due to the excitation of one phase-winding. The obtained results of CMs and MEC are then utilized in reformulated WFT to calculate the inductances of respective phase-winding. Transient analysis is then done to calculate the indexes of performance such as air-gap magnetic field, phase currents, electromagnetic torque, and rotor speed by using the lookup table of inductances while considering different capacitors in auxiliary phase. In each step, the accuracy of analytical results is verified by comparing with corresponding results obtained through FEM.

Keywords


References:
1. Saneie, H., Daniar, A., and Nasiri-Gheidari, Z. "Designb optimization of a low speed small scale modular axial flux permanent magnet synchronous generator for urban wind turbine application", Sci. Iran., 96(6), pp. 3326-3337 (2022).
2. Sharma, U. and Singh, B. "Robust design methodology for single phase induction motor ceiling fan", IET Electr. Power Appl., 14(10), pp. 1846-1855 (2020).
3. Ojaghi, M. and Mohammadi, M. "Unified modeling technique for axially uniform and nonuniform eccentricity faults in three-phase squirrel cage induction motors", IEEE Trans. Ind. Electron., 65(7), pp. 5292- 5301 (2018).
4. Alipour-Sarabi, R., Nasiri-Gheidari, Z., Tootoonchian, F., et al. "Improved winding proposal for wound rotor resolver using genetic algorithm and winding function approach", IEEE Trans. Ind. Electron., 66(2), pp. 1325-1334 (2019).
5. Naderi, P., Sharouni, S., and Moradzadeh, M. "Analysis of partitioned stator  flux-switching permanent magnet machine by magnetic equivalent circuit", Int. J. Electr. Power Energy Syst., 111, pp. 369-381 (2019).
6. Saneie, H. and Nasiri-Gheidari, Z. "Performance analysis of outer-rotor single-phase induction motor based on magnetic equivalent circuit (MEC)", IEEE Trans. Ind. Electron., 68(2), pp. 1046-1054 (2021).
7. Zhang, Z., Xia, C., Yan, Y., et al. "A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines", J. Magn. Magn. Mater., 435, pp. 136-145 (2017).
8. Wu, L., Zhu, M., Wang, D., et al. "A subdomain model for open-circuit field prediction in dualstator consequent-pole permanent magnet machines", IEEE Trans. Magn., 55(8), Article Sequence Number: 8204212 (2019).
9. Min, S.G. and Sarlioglu, B. "Analytical prediction and multi constrained nonlinear optimization of slotted linear PM motors taking into account two-dimensional end effects", IEEE Trans. Ind. Electron., 67(4), pp. 2965-2976 (2020).
10. Zhou, Y. and Xue, Z.Q. "Analytical method for calculating the magnetic field of spoke-type permanentmagnet machines accounting for eccentric magnetic pole", IEEE Trans. Ind. Electron., 68(3), pp. 2096- 2107 (2021).
11. Guo, B., Huang, Y., Peng, F., et al. "A new hybrid method for magnetic field calculation in IPMSM accounting for any rotor configuration", IEEE Trans. Ind. Electron., 66(7), pp. 5015-5024 (2019).
12. Torregrossa, D., Fahimi, B., Peyraut, F., et al. "Fast computation of electromagnetic vibrations in electrical machines via field reconstruction method and knowledge of mechanical impulse response", IEEE Trans. Ind. Electron., 59(2), pp. 839-847 (2012).
13. Guo, R., Yu, H., and Guo, B. "Analysis of a tubular linear permanent magnet oscillator with auxiliary teeth configuration for energy conversion system", IEEE Trans. Transp. Electrif., 6(2), pp. 602-611 (2020).
14. Farhadian, M., Moallem, M., and Fahimi, B. "Analytical calculation of magnetic field components in synchronous reluctance machine accounting for rotor flux barriers using combined conformal mapping and magnetic equivalent circuit methods", J. Magn. Magn. Mater., 505, 166762 (2020).
15. Wu, L.J., Li, Z., Wang, D., et al. "On-load field prediction of surface-mounted PM machines considering nonlinearity based on hybrid field model", IEEE Trans. Magn., 55(3), Article Sequence Number: 8100911 (2019).
16. Li, Z., Huang, X., Wu, L., et al. "Open-circuit field prediction of interior permanent-magnet motor using hybrid field model accounting for saturation", IEEE Trans. Magn., 55(7), Article Sequence Number: 8100911 (2019).
17. Li, Z., Huang, X., Wu, L., et al. "An improved hybrid field model for calculating on-load performance of interior permanent-magnet motors", IEEE Trans. Ind. Electron., 68(10), pp. 9207-9217 (2021).
18. Rezaee-Alam, F. and Rezaeealam, B. "An enhanced analytical technique based on winding function theory for analysis of induction motors", Int. Trans. on Electr. Energy Syst., 31(5), e12863 (2021).
19. Rezaee-Alam, F., Rezaeealam, B., and Naeini, V. "An improved winding function theory for accurate modeling of small and large air-gap electric machines", IEEE Trans. Magn., 57(5), Article Sequence Number: 8104513 (2021).
20. Nandi, S. "A detailed model of induction machines with saturation extendable for fault analysis", IEEE Trans. Ind. Appl., 40(5), pp. 1302-1309 (2004).
21. Tu, X., Dessaint, L., Champagne, R., et al. "Transient modeling of squirrel-cage induction machine considering air-gap  flux saturation harmonics", IEEE Trans. Ind. Electron., 55(7), pp. 2798-2809 (2008).
22. Ghoggal, A. and Hamida, A.H. "Transient and steadystate modeling of healthy and eccentric induction motors considering the main and third harmonic saturation factors", IET Electr. Power Appl., 13(7), pp. 901-913 (2019).
23. Ojaghi, M. and Nasiri, S. "Modeling eccentric squirrelcage induction motors with slotting effect and saturable teeth reluctances", IEEE Trans. Energy Conver., 29(3), pp. 619-627 (2014).
24. Tessarolo, A. "Accurate computation of multiphase synchronous machine inductances based on winding function theory", IEEE Trans. Energy Conver., 27(4), pp. 895-904 (2012).
25. Saied S.A., Abbaszadeh, K., Tenconi, A., et al. "New approach to cogging torque simulation using numerical functions", IEEE Trans. Ind. Appl., 50(4), pp. 2420- 2426 (2014).
26. Ojaghi, M. and Akhondi, R. "Modeling induction motors under mixed radial-axial asymmetry of the air gap produced by oil-whirl fault in a sleeve bearing", IEEE Trans. Magn., 54(11), Article Sequence Number: 8205105 (2018).
27. Ojaghi, M., Sabouri, M., and Faiz, J. "Analytic model for induction motors under localized bearing faults", IEEE Trans. Energy Conver., 33(2), pp. 617-626 (2018).
28. Shmitz, N.L. and Novotny, D.W., Introductory Electromechanics, New York: Roland (1965).
29. Driscoll, T.A. and Trefethen, L.N., Schwarz-Christoffel Mapping, Cambridge University Press (2002).
30. Toliyat, H.A., Arefeen, M.S., and Parlos, A.G. "A method for dynamic simulation of Air-gap eccentricity in induction machines", IEEE Trans. Ind. Appl., 32(4), pp. 910-918 (1996).
31. Rezaeealam, B. and Rezaee-Alam, F. "A new optimal design of surface mounted permanent magnet synchronous motors with integral slot per pole", Int. J. Com. Mat. (COMPEL), 37(1), pp. 136-152 (2018). 
32. Maxwell 14. Documentation Center; 2010. http://www.Ansoft.com.