Enhancement of electrical conductivity of bismuth oxide/activated carbon composite

Document Type : Article

Authors

1 Chemistry Department, Faculty of Sciences and Mathematics, Universitas Diponegoro. Jl. Prof. Soedharto, S.H. Tembalang Semarang, Central Java 50275, Indonesia

2 Department of Physics, Faculty of Mathematics and Natural Science, Universitas Sebelas Maret, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126, Indonesia

Abstract

This study aims to synthesize bismuth oxide/activated carbon composites composed of rice husks for battery anodes and to determine the effect of bismuth nitrate pentahydrate mole variations on the characteristics of the resulting composites. The bismuth oxide/activated carbon composite synthesis was carried out using bismuth nitrate pentahydrate, sodium sulfate, and sodium hydroxide precursors which were mixed with rice husk-based activated carbon. A variation was made for the mole of bismuth nitrate pentahydrate used, while the compositions of activated carbon and other precursors were made fixed. The composites were synthesized using the hydrothermal method at a temperature of 1100C for 5 hours. The results showed that bismuth oxide was successfully formed as a composite in the 8 mmol variation with a composite electrical conductivity value of 2.40 x 10-3 S.m-1.

Keywords


References:
1. Yao, F. and Cojocaru, C.S. "Carbon-based nanomaterials as an anode for lithium ion battery", Doctoral Dissertation, Ecole Polytechnique X. (2013).
2. Linden, D. and Reddy, T.B. "Basic concept", In Handbook of Batteries, McGraw-Hill, USA, Chapter 1, pp. 19-34 (2002).
3. Nandi, S. and Das, S.K. "An electrochemical study on bismuth oxide (Bi2O3) as an electrode material for rechargeable aqueous aluminum-ion battery", Solid State Ion., 347, p. 115228 (2020).
4. Mei, J., Liao, T., Ayoko, G.A., et al. "Two-dimensional bismuth oxide heterostructured nanosheets for lithiumand sodium-ion storages", ACS Appl. Mater. Interfaces, 11, pp. 28205-28212 (2019).
5. Yin, H., Cao, M.L., Yu, X.X., et al. "Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries", Mater. Chem. Front., 1, pp. 1615-1621 (2017).
6. Xiong, T., Xiong, T., Lee, W.S.V., et al. "Bismuth ion battery - A new member in trivalent battery technology", Energy Stor. Mater., 25, pp. 100-104 (2020).
7. Demir, E., Soytas, S.H., and Demir-Cakan, R. "Bismuth oxide nanoparticles embedded carbon nanofibers as self-standing anode material for Na-ion batteries", Solid State Ion., 342, p. 115066 (2019).
8. Li, Y., Trujillo, M.A., Fu, E., et al. "Bismuth oxide: a new lithium-ion battery anode", J. Mater. Chem. A., 1, pp. 12123-12127 (2013).
9. Dai, R., Wang, Y., Da, P., et al. "Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage", Nanoscale, 6, pp. 13236-13241 (2014).
10. Huang, Z.-D., Lu, H., Qian, K., et al. "Interfacial engineering enables Bi@C-TiOx microspheres as superpower and long life anode for lithium-ion batteries", Nano Energy, 51, pp. 137-145 (2018).
11. Hong, W., Ge, P., Jiang, Y., et al. "Yolk-shellstructured bismuth@ N-doped carbon anode for lithium-ion battery with high volumetric capacity", ACS Appl. Mater. Interfaces, 11, pp. 10829-10840 (2019).
12. Zhong, Y., Li, B., Li, S., et al. "Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery", Nanomicro Lett., 10, pp. 1-14 (2018).
13. Wang, Z., Smith, A.T., Wang, W., et al. "Versatile nanostructures from rice husk biomass for energy applications", Angew. Chem. Int. Ed., 57, pp. 13722- 13734 (2018).
14. Yu, K., Li, J., Qi, H., et al. "High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method", Diam. Relat. Mater., 86, pp. 139-145 (2018).
15. Wang, L., Schnepp, Z., and Titirici, M.M. "Rice huskderived carbon anodes for lithium ion batteries", J. Mater. Chem. A, 1, pp. 5269-5273 (2013).
16. Jamilatun, S. and Setyawan, M. "Pembuatan arang aktif dari tempurung kelapa dan aplikasinya untuk penjernihan asap cair", Spektrum Industri, 12(1), pp. 73-86 (2014).
17. Kim, T., Jo, C., Lim, W.G., et al. "Facile conversion of activated carbon to battery anode material using microwave graphitization", Carbon, 104, pp. 106-111 (2016).
18. Shrivastav, V., Sundriyal, S., Tiwari, U.K., et al. "Metal-organic framework derived zirconium oxide/ carbon composite as an improved supercapacitor electrode", Energy, 235, p. 121351 (2021).
19. Peng, J., Zhang, W., Chen, L., et al. "A versatile route to metal oxide nanoparticles impregnated in carbon matrix for electrochemical energy storage", Chem. Eng. J., 404, p. 126461 (2021).
20. Wang, R., Li, X., Nie, Z., et al. "Metal/metal oxide nanoparticles-composited porous carbon for highperformance supercapacitors", J. Energy Storage, 38, p. 102479 (2021).
21. Fang, W., Fan, L., Zhang, Y., et al. "Synthesis of carbon coated Bi2O3 nanocomposite anode for sodiumion batteries", Ceram. Int., 43, pp. 8819-8823 (2017).
22. Ouyang, Y., Chen, Y., Peng, J., et al. "Nickel sulfide/activated carbon nanotubes nanocomposites as advanced electrode of high-performance aqueous asymmetric supercapacitors", J. Alloys Compd., 885, p. 160979 (2021).
23. Huang, Y., Peng, J., Luo, J., et al. "Spherical Gr/Si/GO/C composite as high-performance anode material for lithium-ion batteries", Energy Fuels, 34, pp. 7639-7647 (2020).
24. Kalaga, K., Rodrigues, M.T.F., Trask, S.E., et al. "Calendar-life versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes", Electrochim. Acta, 280, pp. 221-228 (2018).
25. Astuti, Y., Aprialdi, F., Arnelli, and Haryanto, I. "Synthesis of activated carbon/bismuth oxide composite and its characterization for battery electrode", In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 509, p. 012153 (2019).
26. Gupta, S., Aberg, B., and Carrizosa, S. "Hydrothermal synthesis of vanadium pentoxides-reduced graphene oxide composite electrodes for enhanced electrochemical energy storage", MRS Adv., 1, pp. 3049-3055 (2016).
27. Wu, C., Shen, L., Huang, Q., et al. "Hydrothermal synthesis and characterization of Bi2O3 nanowires", Mater. Lett., 65, pp. 1134-1136 (2011).
28. Astuti, Y., Musthafa, F., Arnelli, and Nurhasanah, I. "French fries-like bismuth oxide: physicochemical properties, electrical conductivity and photocatalytic activity", Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), pp. 146-156 (2022).
29. Santoso, B. "Sintesis karbon aktif termodifikasi surfaktan HDTMA-Br dengan aktivator h3po4 dan radiasi gelombang mikro sebagai adsorben NO2 ", Skripsi, Departemen Kimia, Fakultas Sains dan Matematika, Universitas Diponegoro, Jawa Tengah Indonesia (2019).
30. Di Blasi, C. "Modeling chemical and physical processes of wood and biomass pyrolysis", Prog. Energy Combust. Sci., 34, pp. 47-90 (2008).
31. Safitri, Z.F., Pangestika, A.W., Fauziah, F., et al. "The influence of activating agents on the performance of rice husk-based carbon for sodium lauryl sulfate and chrome (Cr) metal adsorptions", in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 172, p. 012007 (2017).
32. Yaman, S. "Pyrolysis of biomass to produce fuels and chemical feedstocks", Energy Convers. Manag., 45, pp. 651-671 (2004).
33. Biswas, B., Pandey, N., Bisht, Y., et al. "Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk", Bioresour. Technol., 237, pp. 57-63 (2017).
34. Muniandy, L., Adam, F., Mohamed, A.R., et al. "The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH", Microporous Mesoporous Mater., 197, pp. 316-323 (2014).
35. Gondal, M., Saleh, T.A., and Drmosh, Q. "Optical properties of bismuth oxide nanoparticles synthesized by pulsed laser ablation in liquids", Sci. Adv. Mater., 4, pp. 507-510 (2012).
36. Astuti, Y., Amri, D., Widodo, D.S., et al. "Effect of fuels on the physicochemical properties and photocatalytic activity of bismuth oxide, synthesized using solution combustion method", Int. J. Technol., 11, pp. 26-36 (2020).
37. Astuti, Y., Elesta, P.P., Widodo, D.S., et al. "Hydrazine and urea fueled-solution combustion method for Bi2O3 synthesis: characterization of physicochemical properties and photocatalytic activity", Bull. Chem. React. Eng. Catal., 15, pp. 104-111 (2020).
38. Bandyopadhyay, S., Anirban, S., Sinha, A., et al. "Ionic conductivity of rare earth doped phase stabilized Bi2O3: Effect of ionic radius", In AIP Conference Proceedings, AIP Publishing LLC, 1832, p. 110020 (2017).
39. Wazir, A.H., Wazir, I.U., and Wazir, A.M. "Preparation and characterization of rice husk based physical activated carbon", Energ Source Part A., pp. 1-11 (2020).
40. Teo, E.Y.L., Muniandy, L., Ng, E.P., et al. "High surface area activated carbon from rice husk as a high performance supercapacitor electrode", Electrochim. Acta, 192, pp. 110-119 (2016).
41. Zhang, L., Hashimoto, Y., Taishi, T., et al. "Fabrication of flower-shaped Bi2O3 superstructure by a facile template-free process", Appl. Surf. Sci., 257, pp. 6577-6582 (2011).
42. Shen, Y., Li, Y.W., Li, W.M., et al. "Growth of Bi2O3 ultrathin films by atomic layer deposition", J. Phys. Chem. C, 116, pp. 3449-3456 (2012).
43. Trivedi, M.K., Tallapragada, R.M., Branton, A., et al. "Evaluation of atomic, physical, and thermal properties of bismuth oxide powder: An impact of biofield energy treatment", Am. J. Nano Res. Appl., 3, pp. 94-98 (2015).
44. Aflahannisa, A. and Astuti, A. "Sintesis nanokomposit karbon-tio2 sebagai anoda baterai lithium", J. Fisika Unand, 5, pp. 357-363 (2016).
45. Xie, Y., Sohn, S., Wang, M., et al. "Superclustercoupled crystal growth in metallic glass forming liquids", Nat. Commun., 10, pp. 1-9 (2019).
46. Sefthymaria, S., Nuryanto, R., and Taslimah, T. "Pengaruh variasi chelating agent terhadap karakteristik produk pada sintesis elektrolit padat NaMn2xMgxO4 dengan metode sol-gel", J. Kim. Sains Apl., 18, pp. 79-84 (2015).
47. Yang, Z., Shen, J., and Archer, L.A. "An in situ method of creating metal oxide-carbon composites and their application as anode materials for lithium-ion batteries", J. Mater. Chem., 21, pp. 11092-11097 (2011).
48. Berger, L.I., Semiconductor Materials, CRC Press (1996).
49. Thommes, M., Kaneko, K., Neimark, A.V., et al. "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)", Pure Appl. Chem., 87, pp. 1051-1069 (2015).
50. Subhan, A. "Fabrikasi dan karakterisasi Li4Ti5O12 untuk bahan anoda Baterai Lithium Keramik: Sinthesis and characterization of Li4Ti5O12 as anode material for lithium ceramic battery", Thesis, Program Studi Teknik Metalurgi dan Material, Universitas Indonesia, Jakarta Indonesia (2011).
51. Cai, J., Wei, W., Hu, X., et al. "Electrical conductivity models in saturated porous media: A review", Earth Sci. Rev., 171, pp. 419-433 (2017).
52. Kultayeva, S., Ha, J.H., Malik, R., et al. "Effects of porosity on electrical and thermal conductivities of porous SiC ceramics", J. Eur. Ceram. Soc., 40, pp. 996-1004 (2020).
Volume 29, Issue 6 - Serial Number 6
Transactions on Chemistry and Chemical Engineering (C)
November and December 2022
Pages 3119-3131
  • Receive Date: 01 March 2021
  • Revise Date: 26 September 2021
  • Accept Date: 14 February 2022