References:
1. Padberg, M.W. "On the facial structure of set packing polyhedral", Mathematical Programming, 5, pp. 199- 215 (1973). DOI: 10.1007/BF01580121.
2. Balas E. "Facets of the knapsack polytope", Mathematical Programming, 8, pp. 146-164 (1975). DOI:10.1007/BF01580440.
3. Wolsey, L.A. "Faces for a linear inequality in 0-1 variables", Mathematical Programming, 8, pp. 165-178 (1975). DOI: 10.1007/BF01580441.
4. Zemel, E. "Lifting the facets of zero-one polytopes", Mathematical Programming, 15, pp. 268-277 (1978). DOI: 10.1007/BF01609032.
5. Zemel, E. "Easily computable facets of the knapsack polytope", Mathematics of Operations Research, 14, pp. 760-764 (1989). DOI: 10.1287/moor.14.4.760.
6. Balas, E. and Zemel, E. "Facets of the knapsack polytope from minimal covers", SIAM Journal on Applied Mathematics, 34, pp. 119-148 (1978). DOI: 10.1137/0134010.
7. Gottlieb, E.S. and Rao, M. "Facets of the knapsack polytope derived from disjoint and overlapping index configurations", Operations Research Letters, 7, pp. 95-100 (1988). DOI: 10.1016/0167-6377(88)90073-9.
8. Escudero, L.F., Garin, A., and Perez, G. "An O(n log n) procedure for identifying facets of the knapsack polytope", Operations Research Letters, 31, pp. 211- 218 (2003). DOI: 10.1016/S0167-6377(02)00221-3.
9. Escudero, L.F., Garin, A., Perez, G. "O(n log n) procedures for tightening cover inequalities", European Journal of Operational Research, 113, pp. 676-687 (1999). DOI: 10.1016/S0377-2217(98)00100-3.
10. Easton, T. and Hooker, K. "Simultaneously lifting sets of binary variables into cover inequalities for knapsack polytopes", Discrete Optimization, 5, pp. 254-261 (2008). DOI: 10.1016/j.disopt.2007.05.003.
11. Atamturk, A. and Bhardwaj, A. "Supermodular covering knapsack polytope", Discrete Optimization, 18, pp. 74-86 (2015). DOI: 10.1016/j.disopt.2015.07.003.
12. Hickman, R. and Easton, T. "On merging cover inequalities for multiple knapsack problems", Open Journal of Optimization, 4, p. 141 (2015). DOI: 10.4236/ojop.2015.44014.
13. Zhao, M., Huang, K., and Zeng, B. "A polyhedral study on chance constrained program with random right-hand side", Mathematical Programming, 166, pp. 19-64 (2017). DOI: 10.1007/s10107-016-1103-6.
14. Talamantes, A. and Easton, T. "Lifted equailty cuts for the knapsack equality problem", In IIE Annual Conference Proceedings, 1, pp. 1571-1576 (2017).
15. Dey, S.S. and Molinaro, M. "Theoretical challenges towards cutting-plane selection", Mathematical Programming, 170, pp. 237-266 (2018). DOI:10.48550/arXiv.1805.02782.
16. Hojny, C., Gally, T., Habeck, O., et al. "Knapsack polytopes: a survey", Annals of Operations Research, 1, pp. 1-49 (2019).
17. Bienstock, D. and Zuckerberg, M. "Simpler derivation of bounded pitch inequalities for set covering, and minimum knapsack sets", arXiv preprint arXiv:1806.07435(2018). DOI: 10.48550/arXiv.1806.07435.
18. Fischetti, M., Ljubic, I., Monaci, M., et al. "Interdiction games and monotonicity, with application to knapsack problems", INFORMS Journal on Computing, 31, pp. 390-410 (2019). DOI: 10.1287/ijoc.2018.0831.
19. Chen, W.K. and Dai, Y.H. "On the complexity of sequentially lifting cover inequalities for the knapsack polytope", Science China Mathematics, 64, pp. 211- 220 (2021). DOI: 10.1007/s11425-019-9538-1.
20. Abdi, A. and Fukasawa, R. "On the mixing set with a knapsack constraint", Mathematical Programming, 157, pp. 191-217 (2016). DOI: 10.1007/s10107-016- 0979-5.
21. Del Pia, A., Linderoth, J., and Zhu, H., Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets, arXiv preprint arXiv:2106.00301 (2021). DOI: 10.1007/s10107-022-01817-4.
22. Bazzi, A., Fiorini, S., Huang, S., et al. "Small extended formulation for knapsack cover inequalities from monotone circuits", In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 1, pp. 2326-2341 (2017). DOI:
10.1137/1.9781611974782.153.
23. Vitor, F. and Easton, T. "Approximate and exact merging of knapsack constraints with cover inequalities", Optimization, 70, pp. 437-460 (2021).
24. Bienstock, D., Faenza, Y., Malinovic, I., et al. "On inequalities with bounded coefficients and pitch for the min knapsack polytope", Discrete Optimization, 1, pp. 100567-100570 (2020). DOI:10.1016/j.disopt.2020.100567.
25. Shim, S., Chopra, S., and Cao, W. "The worst case analysis of strong knapsack facets", Mathematical Programming, 162, pp. 465-493 (2017). DOI: 10.1007/s10107-016-1050-2.
26. Chopra, S., Shim, S., and Steffy, D.E. "A concise characterization of strong knapsack facets", Discrete Applied Mathematics, 1, pp. 136-152 (2019). DOI: 10.1016/j.dam.2018.05.006.
27. Letchford, A.N. and Souli, G. "On lifted cover inequalities: A new lifting procedure with unusual properties", Operations Research Letters, 47, pp. 83-87 (2019). DOI: 10.1016/j.orl.2018.12.005.
28. Letchford, A.N. and Souli, G. "Lifting the knapsack cover inequalities for the knapsack polytope", Operations Research Letters, 48, pp. 607-611 (2020). DOI: 10.1016/j.orl.2020.07.010.