References:
1. Harcar, T. and Karakaya, F. “A cross-cultural exploration of attitudes toward product expiration dates”, Psychology & Marketing, 22(4), pp. 353–371 (2005). https://doi.org/10.1002/mar.20063.
2. Minner, S. and Transchel, S. “Periodic review inventory-control for perishable products under servicelevel constraints”, OR Spectrum, 32(4), pp. 979-996 (2010). https://doi.org/10.1007/s00291-010-0196-1.
3. Kaya, O. and Polat, A.L. “Coordinated pricing and inventory decisions for perishable products”, OR Spectrum, 39(2), pp. 589-606 (2017). https://doi.org/10.1007/s00291-016-0467-6.
4. Nahmias, S. “Perishable inventory theory: a review”, Operations Research, 30(3), pp. 680-708 (1982). https://doi.org/10.1287/opre.30.4.680.
5. Janssen, L., Claus, T., and Sauer, J. “Literature review of deteriorating inventory models by key topics from 2012 to 2015”, International Journal of Production Economics, 182(1), pp. 86-112 (2016). https://doi.org/10.1016/j.ijpe.2016.08.019.
6. Burwell, T.H., Dave, D.S., Fitzpatrick, K.E., et al. “An inventory model with planned shortages and price dependent demand”, Decision Sciences, 22(5), pp. 1187-1191 (1991). https://doi.org/10.1111/j.1540-5915.1991.tb01916.x.
7. Rajan, A., Rakesh, and Steinberg, R. “Dynamic pricing and ordering decisions by a monopolist”, Management Science, 38(2), pp. 240-262 (1992). https://doi.org/10.1287/mnsc.38.2.240.
8. Abad, P.L. “Optimal price and order size for a reseller under partial backordering”, Computers & Operations Research, 28(1), pp. 53-65 (2001). https://doi.org/10.1016/s0305-0548(99)00086-6.
9. Abad, P.L. “Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale”, European Journal of Operational Research, 144(3), pp. 677-685 (2003). https://doi.org/10.1016/s0377-2217(02)00159-5.
10. Mukhopadhyay, S., Mukherjee, R.N., and Chaudhuri, K.S. “Joint pricing and ordering policy for a deteriorating inventory”, Computers & Industrial Engineering, 47(4), pp. 339-349 (2004). https://doi.org/10.1016/j.cie.2004.06.007.
11. You, P.S. “Inventory policy for products with price and time-dependent demands”, Journal of the Operational Research Society, 56(7), pp. 870-873 (2005). https://doi.org/10.1057/palgrave.jors.2601905.
12. Sana, S.S. “Optimal selling price and lotsize with time varying deterioration and partial backlogging”, Applied Mathematics and Computation, 217(1), pp. 185-194 (2010). https://doi.org/10.1016/j.amc.2010.05.040.
13. Avinadav, T., Herbon, A., and Spiegel, U. “Optimal inventory policy for a perishable item with demand function sensitive to price and time”, International Journal of Production Economics, 144(2), pp. 497-506 (2013). https://doi.org/10.1016/j.ijpe.2013.03.022.
14. Wee, H.M. “Economic production lot size model for deteriorating items with partial back-ordering”, Computers & Industrial Engineering, 24(3), pp. 449- 458 (1993). https://doi.org/10.1016/0360-8352(93)90040-5.
15. Wagner, H.M. and Whitin, T.M. “Dynamic version of the economic lot size model”, Management Science, 5(1), pp. 89-96 (1958). https://doi.org/10.1287/mnsc.1040.0306.
16. Ghare, P.M. and Schrader, G.F. “A model for exponentially decaying inventory”, Journal of Industrial Engineering, 14(5), pp. 238-243 (1963).
17. Bhunia, A.K. and Maiti, M. “Deterministic inventory model for deteriorating items with finite rate of replenishment dependent on inventory level”, Computers & Operations Research, 25(11), pp. 997- 1006 (1998). https://doi.org/10.1016/s0305-0548(97)00091-9.
18. Wee, H.M. “A replenishment policy for items with a price-dependent demand and a varying rate of deterioration”, Production Planning & Control, 8(5), pp. 494-499 (1997). https://doi.org/10.1080/095372897235073.
19. Chakrabarty, T., Giri, B.C., and Chaudhuri, K.S. “An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: an extension of Philip's model”, Computers & Operations Research, 25(7), pp. 649-657 (1998). https://doi.org/10.1016/s0305-0548(97)00081-6.
20. Eilon, S. and Mallaya, R.V. “Issuing and pricing policy of semi-perishables”, in Proceedings of the 4th International Conference on Operational Research., Wiley-Interscience (1966).
21. Wee, H.M. “Joint pricing and replenishment policy for deteriorating inventory with declining market”, International Journal of Production Economics, 40(2- 3), pp. 163-171 (1995). https://doi.org/10.1016/0925-5273(95)00053-3.
22. Federgruen, A. and Heching, A. “Combined pricing and inventory control under uncertainty”, Operations Research, 47(3), pp. 454-475 (1999). https://doi.org/10.1287/opre.47.3.454.
23. Chang, H.J., Teng, J.T., Ouyang, L.Y., et al. “Retailer’s optimal pricing and lot-sizing policies for deteriorating items with partial backlogging”, European Journal of Operational Research, 168(1), pp. 51-64 (2006). https://doi.org/10.1016/j.ejor.2004.05.003.
24. Chen, L.M. and Sapra, A. “Joint inventory and pricing decisions for perishable products with two‐period lifetime”, Naval Research Logistics (NRL), 60(5), pp. 343-366 (2013).https://doi.org/10.1002/nav.21538.
25. Taleizadeh, A.A., Satarian, F., and Jamili, A. “Optimal multi-discount selling prices schedule for deteriorating product”, Scientia Iranica, E, 22(6), pp. 2595-2603 (2015).
26. Adenso-Díaz, B., Lozano, S., and Palacio, A. “Effects of dynamic pricing of perishable products on revenue and waste”, Applied Mathematical Modelling, 45, pp. 148-164 (2017). https://doi.org/10.1016/j.apm.2016.12.024.
27. Feng, L., Chan, Y.L., and Cárdenas-Barrón, L.E. “Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date”, International Journal of Production Economics, 185, pp. 11-20 (2017). https://doi.org/10.1016/j.ijpe.2016.12.017.
28. Yao, D. “Joint pricing and inventory control for a stochastic inventory system with Brownian motion demand”, IISE Transactions, 49(12), pp. 1101-1111 (2017). https://doi.org/10.1080/24725854.2017.1355126.
29. Dobson, G., Pinker, E.J., and Yildiz, O. “An EOQ model for perishable goods with age-dependent demand rate”, European Journal of Operational Research, 257(1), pp. 84-88 (2017). https://doi.org/10.1016/j.ejor.2016.06.073.
30. Chua, G.A., Mokhlesi, R., and Sainathan, A. “Optimal discounting and replenishment policies for perishable products”, International Journal of Production Economics, 186, pp. 8-20 (2017). https://doi.org/10.1016/j.ijpe.2017.01.016.
31. Kaya, O. and Rahimi Ghahroodi, S. “Inventory control and pricing for perishable products under age and price dependent stochastic demand”, Mathematical Methods of Operations Research, 88(1), pp. 1-35 (2018). https://doi.org/10.1007/s00186-017-0626-9.
32. Agi, M.A. and Soni, H.N. “Joint pricing and inventory decisions for perishable products with age-, stock-, and price-dependent demand rate”, Journal of the Operational Research Society, 71(1), pp. 85-99 (2019). https://doi.org/10.1080/01605682.2018.1525473.
33. Khan, M.A.A., Shaikh, A.A., Panda, G.C., et al. “Inventory system with expiration date: Pricing and replenishment decisions”, Computers & Industrial Engineering, 132, pp. 232-247 (2019). https://doi.org/10.1016/j.cie.2019.04.002.
34. Wei, J., Liu, Y., Zhao, X., and Yang, X. “Joint optimization of pricing and inventory strategy for perishable product with the quality and quantity loss”, Journal of Industrial and Production Engineering, 37(1), pp. 23-32 (2020). https://doi.org/10.1080/21681015.2020.1719222.
35. Dye, C.Y. “Optimal joint dynamic pricing, advertising and inventory control model for perishable items with psychic stock effect”, European Journal of Operational Research, 283(2), pp. 576-587 (2020). https://doi.org/10.1016/j.ejor.2019.11.008.
36. Soni, H.N. “Joint pricing and inventory policies for perishable items with price discount based on freshness index”, Turkish Journal of Computer and Mathematics Education, 12(11), pp. 1954-1963 (2021). https://doi.org/10.17762/turcomat.v12i11.6150.
37. Kaya, O. and Bayer, H. “Pricing and lot-sizing decisions for perishable products when demand changes by freshness”, Journal of Industrial and Management Optimization, 17(6), p. 3113 (2021). https://doi.org/10.3934/jimo.2020110.
38. Tawarmalani, M. and Sahinidis, N.V. “GAMS/BARON: A tutorial and empirical performance analysis”, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming, pp. 313-401 (2002). https://doi.org/10.1007/978-1-4757-3532-1_11.
39. Bratton, D. and Kennedy, J. “Defining a standard for particle swarm optimization”, in Swarm Intelligence Symposium, SIS 2007, IEEE (2007). https://doi.org/10.1109/sis.2007.368035.
40. Snkar, K.P., Classification and Learning Using Genetic Algorithms, Springer (2007). https://doi.org/10.1007/3- 540-49607-6.