References
[1] Kadilar, C., and Cingi, H. “Ratio estimators for the population variance in simple and stratified random sampling”, Applied Mathematics and Computation, 173(2), pp. 1047-1059, (2006).
[2] Khan, M., and Shabbir, J. “A ratio type estimator for the estimation of population variance using quartiles of an auxiliary variable”, Journal of Statistics Applications and Probability, 2(3), pp. 157-162, (2013).
[3] Singh, H. P., Pal, S. K., and Solanki, R. S. “A new procedure for estimation of finite population variance using auxiliary information”, Journal of Reliability and Statistical Studies, 7(2), pp. 149-160, (2014).
[4] Yadav, S. K., Kadilar, C., Shabbir, J., and Gupta, S. Improved family of estimators of population variance in simple random sampling”, Journal of Statistical Theory and Practice, 9(2), pp. 219-226, (2015).
[5] Yaqub, M., and Shabbir, J. “An improved class of estimators for finite population variance”, Hacettepe Journal of Mathematics and Statistics, 45(5), pp. 1641-1660, (2016).
[6] Singh, H. P., and Pal, S. K. “Estimation of population variance using known coefficient of variation of an auxiliary variable in sample surveys”, Journal of Statistics and Management Systems, 20(1), pp. 91-111, (2017).
[7] Sanaullah, A., Asghar, A., and Hanif, M. “General class of exponential estimator for estimating finite population variance”, Journal of Reliability and Statistical Studies, 10(2), pp. 1-16, (2017).
[8] Muneer, S., Khalil, A., Shabbir, J., and Narjis, G. “A new improved ratio-product type exponential estimator of finite population variance using auxiliary information”, Journal of Statistical Computation and Simulation, 88(16), pp. 3179-3192, (2018).
[9] Housila P. Singh, Surya K. P. and Yadav, A. “A study on the chain ratio-ratio-type exponential estimator for finite population variance”, Communications in Statistics - Theory and Methods, 47(6), pp.1442-1458, (2018).
[10] Sharma, P., Verma, H. K., Singh, R., and Bouza, C. N. “Estimators for population variance using auxiliary information on quartile”, Investigación Operacional, 39(4), pp. 528-535, (2019).
[11] Abid, M., Nazir, H. Z., Riaz, M., Lin, Z., and Tahir, H. M. “Improved ratio estimators using some robust measures”, Hacettepe Journal of Mathematics and Statistics, 47(5), pp. 1375-1393, (2018).
[12] Abid, M., Ahmed, S., Tahir, M., Zafar Nazir, H., and Riaz, M. “Improved ratio estimators of variance based on robust measures”, Scientia Iranica, 26(4), pp. 2484-2494 (2019).
[13] Naz, F., Abid, M., Nawaz, T. and Pang, T. “Enhancing the efficiency of the ratio-type estimators of population variance with a blend of information on robust location measures”, Scientia Iranica, 27(4), pp. 2040-2056 (2019).
[14] Zaman, T. and Bulut, H. “Modified regression estimators using robust regression methods and covariance matrices in stratified random sampling”, Communications in Statistics-Theory and Methods, 49(14), pp. 3407-3420 (2020).
[15] Bulut, H. and Zaman, T. “An improved class of robust ratio estimators by using the minimum covariance determinant estimation”, Communications in Statistics-Simulation and Computation, In Press (2019).
[16] Zaman, T. and Bulut, H. “An efficient family of robust-type estimators for the population variance in simple and stratified random sampling”, Communications in Statistics-Theory and Methods, In Press (2021).
[17] Zaman, T., Dünder, E., Audu, A., Alilah, D. A., Shahzad, U., and Hanif, M. “Robust regression-ratio-type estimators of the mean utilizing two auxiliary variables: A simulation study”, Mathematical Problems in Engineering, 2021, pp. 1-9 (2021).
[18] Grover, L. K. and Kaur, A. “An improved regression type estimator of population mean with two auxiliary variables and its variant using robust regression method”, Journal of Computational and Applied Mathematics, 382, pp. 1-18 (2021).
[19] Zaman, T. and Bulut, H. “A simulation study: Robust ratio double sampling estimator of finite population mean in the presence of outliers”, Scientia Iranica, In Press (2021).
[20] Isaki, C. T. “Variance estimation using auxiliary information”, Journal of the American Statistical Association, 78, pp. 117-123, (1983).
[21] Singh, H. P., Pal, S. K., and Yadav, A. “A study on the chain ratio-ratio-type exponential estimator for finite population variance”, Communications in Statistics-Theory and Methods, 47(6), pp. 1442-1458, (2018).
[22] Upadhyaya, L. N., and Singh, H. P. “An estimator for population variance that utilizes the kurtosis of an auxiliary variable in sample surveys”, Vikram Mathematical Journal, 19(1), pp. 14-17, (1999).
[23] Bulut, H. “Multivariate statistical methods with R applications”, Nobel, Ankara (2018).
[24] Venables, W. N. & Ripley, B. D. “Modern Applied Statistics with S”, Fourth Edition. Springer, New York (2002).
[25] Singh, R. and Malik, S. “Improved estimation of population variance using information on auxiliary attribute in simple random sampling”, Applied mathematics and computation, 235, pp. 43-49 (2014).
[26] Zaman, T., and Bulut, H. “Modified ratio estimators using robust regression methods”, Communications in Statistics - Theory and Methods, 48(8), pp. 2039-2048, (2019).
[27] Zaman, T., Sağlam, V., Sağır, M., Yücesoy, E., and Zobu, M. “Investigation of some estimators via taylor series approach and an application”, American Journal of Theoretical and Applied Statistics, 3(5), pp. 141-147 (2014).