References:
1. Solomon, S., Qin, D., Manning, M., et al., Climate Change 2007 - The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (2007). https://www.ipcc.ch/report/ar4/wg1.
2. Hanna, E. "Radiative forcing of climate change: Expanding the concept and addressing uncertainties. By the National Research Council (NRC). National Academies Press, Washington DC, USA, 2005. 207 pp. Paperback", Weather, 62(4), pp. 109-119 (2007). DOI: 10.1002/wea.8.
3. Huang, Y.A., Weber, C.L., and Matthews, H.S. "Categorization of scope 3 emissions for streamlined enterprise carbon footprinting", Environ. Sci. Technol., 43(22), pp. 8509-8515 (2009). https://doi.org/10.1021/es901643a.
4. Environmental Protection Agency "Managing supply chain greenhouse gas emissions: Lessons learned for the road ahead", U.S. Environ. Prot. Agency, (December), p. 26 (2010).
5. Saif, A. and Elhedhli, S. "Cold supply chain design with environmental considerations: A simulationoptimization approach", Eur. J. Oper. Res., 251(1), pp. 274-287 (2016). https://doi.org/10.1016/j.ejor.2015.10.056.
6. Velders, G.J.M., Fahey, D.W., Daniel, J.S., et al. "The large contribution of projected HFC emissions to future climate forcing", Proc. Natl. Acad. Sci, 106(27), pp. 10949-10954 (2009). https://doi.org/10.1073/pnas.0902817106.
7. Bonney, M. and Jaber, M.Y. "Environmentally responsible inventory models: Non-classical models for a nonclassical era", Int. J. Prod. Econ., 133(1), pp. 43-53 (2011). https://doi.org/10.1016/j.ijpe.2009.10.033.
8. Litto, R., Hayes, R.E., and Liu, B. "Catalytic combustion for reduction of fugitive methane emissions from natural gas compressor stations", Greenh. Gas Control Technol., 1, pp. 329-336 (2005). https://doi.org/10.1016/B978-008044704-9/50034-3.
9. Hariga, M., As'ad, R., and Shamayleh, A. "Integrated economic and environmental models for a multi stage cold supply chain under carbon tax regulation", J. Clean. Prod., 166, pp. 1357-1371 (2017). https://doi.org/10.1016/j.jclepro.2017.08.105.
10. Yu, Y., Zhang, M., and Huo, B. "The impact of supply chain quality integration on green supply chain management and environmental performance", Total Qual. Manag. Bus. Excell., 30(9-10), pp. 1110-1125 (2019). https://doi.org/10.1080/14783363.2017.1356684.
11. Ramudhin, A., Chaabane, A., and Paquet, M. "Carbon market sensitive sustainable supply chain network design", Int. J. Manag. Sci. Eng. Manag., 5(1), pp. 30-38 (2010). https://doi.org/10.1080/17509653.2010.10671088.
12. Diabat, A. and Simchi-Levi, D. "A carbon-capped supply chain network problem", IEEM 2009 - IEEE Int. Conf. Ind. Eng. Eng. Manag., pp. 523-527 (2009). DOI: 10.1109/IEEM.2009.5373289.
13. Harris, I., Mumford, C., and Naim, M. "The multi-objective uncapacitated facility location problem for green logistics", 2009 IEEE Congr. Evol. Comput. CEC 2009, pp. 2732-2739 (2009). DOI: 10.1109/CEC.2009.4983285.
14. Bin, Y. and Jun, H. "An analysis on green supply chain management in E-commerce under the economic globalization.", Bus. Intell. and Financial Eng. Int. Conf. (2009). DOI: 10.1109/BIFE.2009.140.
15. Bojarski, A.D., Lainez, J.M., Espuna, A., et al. "Incorporating environmental impacts and regulations in a holistic supply chains modeling: An LCA approach", Comput. Chem. Eng., 33(10), pp. 1747-1759 (2009). https://doi.org/10.1016/j.compchemeng.2009.04.009.
16. Wang, W. and Liu, X. "China cold-chain logistics energy consumption status and the countermeasures- (China Business and Market) 2011", China Circ. Econ., 25(10), pp. 29-33 (2011).
17. Chaabane, A., Ramudhin, A., and Paquet, M. "Design of sustainable supply chains under the emission trading scheme", Int. J. Prod. Econ., 135(1), pp. 37-49 (2012). https://doi.org/10.1016/j.ijpe.2010.10.025.
18. Hsiao, Y.H., Chen, M.C., and Chin, C.L. "Distribution planning for perishable foods in cold chains with quality concerns: Formulation and solution procedure", Trends Food Sci. Technol., 61, pp. 80-93 (2017). https://doi.org/10.1016/j.tifs.2016.11.016.
19. Catala, L.P., Moreno, M.S., Blanco, A.M., et al. "A bi-objective optimization model for tactical planning in the pome fruit industry supply chain", Comput. Electron. Agric., 130, pp. 128-141 (2016). https://doi.org/10.1016/j.compag.2016.10.008.
20. Behzadi, G., Justin, M., Sullivan, O., et al. "International journal of production economics robust and resilient strategies for managing supply disruptions in an agribusiness supply chain", Int. J. Prod. Econ., 191(June), pp. 207-220 (2017). https://doi.org/10.1016/j.ijpe.2017.06.018.
21. Hua, G., Cheng, T.C.E., and Wang, S. "Managing carbon footprints in inventory control", SSRN Electron. J (2012).
22. Bouchery, Y., Ghaffari, A., Jemai, Z., et al. "Including sustainability criteria into inventory models", Eur. J. Oper. Res., 222(2), pp. 229-240 (2012). https://doi.org/10.1016/j.ejor.2012.05.004.
23. Benjaafar, S., Li, Y., and Daskin, M. "Carbon footprint and the management of supply chains", INFORMS Annu. Meet. San Diego CA., 10(1), pp. 99- 116 (2013). DOI: 10.1109/TASE.2012.2203304.
24. Chen, X., Benjaafar, S., and Elomri, A. "The carbonconstrained EOQ", Oper. Res. Lett., 41(2), pp. 172- 179 (2013). https://doi.org/10.1016/j.orl.2012.12.003.
25. Absi, N., Dauzere-Peres, S., Kedad-Sidhoum, S., et al. "Lot sizing with carbon emission constraints", Eur. J. Oper. Res., 227(1), pp. 55-61 (2013). https://doi.org/10.1016/j.ejor.2012.11.044.
26. Jaber, M.Y. "Learning and forgetting models and their applications", In Handbook of Industrial and Systems Engineering, Second Edition, pp. 535-566 (December 15, 2013). DOI: 10.1201/9781420038347.ch30.
27. Zanoni, S., Bettoni, L., and Glock, C.H., "Energy implications in a two-stage production system with controllable production rates", Int. J. Prod. Econ., 149, pp. 164-171 (2014). https://doi.org/10.1016/j.ijpe.2013.06.025.
28. Hammami, R., Nouira, I., and Frein, Y. "Carbon emissions in a multi-echelon productioninventory model with lead time constraints", Int. J. Prod. Econ., 164, pp. 292-307 (2015). https://doi.org/10.1016/j.ijpe.2014.12.017.
29. Konur, D. and Schaefer, B. "Integrated inventory control and transportation decisions under carbon emissions regulations: LTL vs. TL carriers", Transp. Res. Part E Logist. Transp. Rev., 68, pp. 14-38 (2014). https://doi.org/10.1016/j.tre.2014.04.012.
30. Bozorgi, A., Pazour, J., and Nazzal, D. "A new inventory model for cold items that considers costs and emissions", Int. J. Prod. Econ., 155, pp. 114-125 (2014). https://doi.org/10.1016/j.ijpe.2014.01.006.
31. Bozorgi, A. "Multi-product inventory model for cold items with cost and emission consideration", Int. J. Prod. Econ., 176, pp. 123-142 (2016). https://doi.org/10.1016/j.ijpe.2016.03.011.
32. Miao, X., Zhou, X. and Lin, L. "Study on optimization for cold-chain logistics distribution of 3PL", Oper. Manag., 20, pp. 32-38 (2011). Corpus ID: 63121691.
33. Li, H., Zhang, L., Lv, T., et al. "The twoechelon time-constrained vehicle routing problem in linehaul-delivery systems", Transp. Res. Part B Methodol., 94, pp. 169-188 (2016). https://doi.org/10.1016/j.trb.2016.09.012.
34. Marchi, B., Zanoni, S., Ferretti, I., et al. "Stimulating investments in energy efficiency through supply chain integration", Energies., 11(4), p. 858 (2018). https://doi.org/10.3390/en11040858.
35. Marchi, B., Zanoni, S., Zavanella, L.E., et al. "Green supply chain with learning in production and environmental investments", IFAC-PapersOnLine., 51(11), pp. 1738-1743 (2018). https://doi.org/10.1016/j.ifacol.2018.08.205.
36. Gwanpua, S.G., Verboven, P., Leducq, D., et al. "The FRISBEE tool, a software for optimising the trade-off between food quality, energy use, and global warming impact of cold chains", J. Food Eng., 148, pp. 2-12 (2015). https://doi.org/10.1016/j.jfoodeng.2014.06.021.
37. Hoang, H.M., Flick, D., Derens, E., et al. "Combined deterministic and stochastic approaches for modelling the evolution of food products along the cold chain. Part II: A case study", Int. J. Refrig., 35(4), pp. 915-926 (2012). https://doi.org/10.1016/j.ijrefrig.2011.12.009.
38. Gonela, V. "Stochastic optimization of hybrid electricity supply chain considering carbon emission schemes", Sustain. Prod. Consum., 14, pp. 136-151 (2018). https://doi.org/10.1016/j.spc.2018.02.004.
39. Jiang, D.L. and Yang, X.L. "Genetic algorithm for continuous location problem of physical distribution center for decaying products", Xitong Gongcheng Lilun yu Shijian/System Eng. Theory Pract., 23(2), p. 62 (2003). https://doi.org/10.12011/1000.
40. Wang, H., Wang, L., and Yong, Y. "Distribution of perishable food based on models with time windows", Ind. Eng. J., 3(11), pp. 127-130 (2008). https://doi.org/10.3390/math12020332.
41. Wang, Z. and Zhao, F. "Establishment of route optimization model of refrigerated food transportation", Logist. Technol., 1, pp. 85-88 (2010). 10.1109/ICSSSM. 2012.6252224.
42. Yang, J., Wang, L., Zheng, N., et al. "Study on the distribution center location problem of perishable product with multi-usage", Chin J Manag Sci., 1, pp. 91-99 (2011). http://www.zgglkx.com/EN/Y2011/V19/I1/91.
43. Govindan, K. "Sustainable consumption and production in the food supply chain: A conceptual framework", Int. J. Prod. Econ., 195, pp. 419-431 (2018). https://doi.org/10.1016/j.ijpe.2017.03.003.
44. Rizou, M., Galanakis, I.M., Aldawoud, T.M.S., et al. "Safety of foods, food supply chain and environment within the COVID-19 pandemic", Trends Food Sci. Technol., 102, pp. 293-299 (2020). https://doi.org/10.1016/j.tifs.2020.06.008.
45. Wang, F., Lai, X., and Shi, N. "A multiobjective optimization for green supply chain network design Keywords: Green supply chain management Network design multi-objective optimization", Decis. Support Syst., 51, pp. 262-269 (2011). https://doi.org/10.1016/j.dss.2010.11.020.
46. Xu, Z., Sun, D.W., Zeng, X.A., et al. "Research developments in methods to reduce the carbon footprint of the food system: A review", Crit. Rev. Food Sci. Nutr, 1(2), pp. 1270-1286 (2015). https://doi.org/10.1080/10408398.2013.821593.
47. Toptal, A., Ozlu, H., and Konur, D. "Joint decisions on inventory replenishment and emission reduction investment under different emission regulations", Int. J. Prod. Res., 52(1), pp. 243-269 (2014). https://doi.org/10.1080/00207543.2013.836615.
48. Stellingwerf, H.M., Laporte, G., Cruijssen, F.C.A.M., et al. "Quantifying the environmental and economic benefits of cooperation: A case study in temperature-controlled food logistics", Transp. Res. Part D Transp. Environ., 65, pp. 178-193 (2018). https://doi.org/10.1016/j.trd.2018.08.010.
49. Biel, K. and Glock, C.H. "Systematic literature review of decision support models for energy-efficient production planning", Comput. Ind. Eng., 101, pp. 243-259 (2016). https://doi.org/10.1016/j.cie.2016.08.021.
50. Bazan, E., Jaber, M.Y., and Zanoni, S. "Carbon emissions and energy effects on a two-level manufacturerretailer closed-loop supply chain model with remanufacturing subject to different coordination mechanisms", Int. J. Prod. Econ., 183, pp. 394-408 (2017). https://doi.org/10.1016/j.ijpe.2016.07.009.
51. Wang, C. and Huang, R. "Comments on 'vendormanaged inventory with consignment stock agreement for single vendor-single buyer under the emissiontrading scheme"', Int. J. Prod. Res., 54(13), pp. 4081- 4086 (2016). https://doi.org/10.1080/00207543.2015.1106610.
52. Li, Y., Lim, M.K., and Tseng, M.L. "A green vehicle routing model based on modified particle swarm optimization for cold chain logistics", Ind. Manag. Data Syst., 119(3), pp. 473-494 (2019). https://doi.org/10.1108/IMDS-07-2018-0314.
53. Kancharla, S.R. and Ramadurai, G. "Incorporating driving cycle based fuel consumption estimation in green vehicle routing problems", Sustain. Cities Soc., 40, pp. 214-221 (2018). https://doi.org/10.1016/j.scs.2018.04.016.
54. Xiao, Y. and Konak, A. "A genetic algorithm with exact dynamic programming for the green vehicle routing and scheduling problem", J. Clean. Prod., 167, pp. 1450-1463 (2018). https://doi.org/10.1016/j.jclepro.2016.11.115.
55. Ahn, K. and Rakha, H. "The effects of route choice decisions on vehicle energy consumption and emissions", Transp. Res. Part D Transp. Environ., 13(3), pp. 151- 167 (2008). https://doi.org/10.1016/j.trd.2008.01.005.
56. Leng, L., Zhang, C., Zhao, Y., et al. "Biobjective low-carbon location-routing problem for cold chain logistics: Formulation and heuristic approaches", J. Clean. Prod., 273, p. 122801 (2020). https://doi.org/10.1016/j.jclepro.2020.122801.
57. Chen, W.T. and Hsu, C.I. "Greenhouse gas emission estimation for temperature-controlled food distribution systems", J. Clean. Prod., 104, pp. 139-147 (2015). https://doi.org/10.1016/j.jclepro.2015.05.038.
58. Hoen, K.M.R., Tan, T., Fransoo, J.C., et al. "Effect of carbon emission regulations on transport mode selection under stochastic demand", Flex. Serv. Manuf. J., 26(1-2), pp. 170-195 (2014). DOI: 10.1007/s10696- 012-9151-6.
59. Jaber, M.Y., Glock, C.H., and El Saadany, A.M.A. "Supply chain coordination with emissions reduction incentives", Int. J. Prod. Res., 51(1), pp. 69-82 (2013). https://doi.org/10.1080/00207543.2011.651656.
60. Bozorgi, A., Zabinski, J., Pazour, J., et al. "Cold supply chains and carbon emissions: Recent works and recommendations", International Journal of Production Economics, 155, pp. 1-15 (2014). https://doi.org/10.1016/j.ijpe.2014.01.006.
61. Babagolzadeh, M., Shrestha, A., Abbasi, B., et al. "Sustainable cold supply chain management under demand uncertainty and carbon tax regulation", Transp. Res. Part D Transp. Environ., 80, p. 102245 (2020). https://doi.org/10.1016/j.trd.2020.102245.
62. Yakavenka, V., Mallidis, I., Vlachos, D., et al. "Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products", Ann. Oper. Res., 294(1), pp. 593-621 (2020). https://doi.org/10.1007/s10479-019-03434-5.
63. Wang, S., Sun, H., Mou, J., et al. "Optimization and efficiency of multi-temperature joint distribution of cold chain products: Comparative study based on cold accumulation mode and mechanical", En.Cnki.Com.Cn, 33(3), pp. 146-153 (2016). https://doi.org/10.3969/j.issn.1002-0268.2016.03.024.
64. Wang, X. and Li, D. "A dynamic product quality evaluation based pricing model for perishable food supply chains", Omega, 40(6), pp. 906-917 (2012). https://doi.org/10.1016/j.omega.2012.02.001.
65. Ferguson, M. and Ketzenberg, M.E. "Information sharing to improve retail product freshness of perishables", Prod. Oper. Manag., 15(1), pp. 57-73 (2006). https://doi.org/10.1111/j.1937-5956.2006.tb00003.x.
66. Pineau, S., Brockhoff, P.B., Escher, F., et al. "A comprehensive approach to evaluate the freshness of strawberries and carrots", Postharvest Biol. Technol., 45(1), pp. 20-29 (2007). https://doi.org/10.1016/j.postharvbio.2007.02.001.
67. Taoukis, P.S. and Labuza, T.P. "Applicability of timetemperature indicators as shelf life Monitors of food products", J. Food Sci., 54(4), pp. 783-788 (1989). https://doi.org/10.1111/j.1365-2621.1989.tb07882.x.
68. Blackburn, J. and Scudder, G. "Supply chain strategies for perishable products: The case of fresh produce", Prod. Oper. Manag., 18(2), pp. 129-137 (2009). https://doi.org/10.1111/j.1937-5956.2009.01016.x.
69. Fu, B. and Zabuza, Th. P. "Shelf-life prediction: Theory and application", Food control, 4(3), pp. 125-133 (1993). https://doi.org/10.1016/0956-7135(93)90298-3.
70. Lytou, A., Panagou, E.Z., and Nychas, G.J.E. "Corrigendum to development of a predictive model for the growth kinetics of aerobic microbial population on pomegranate marinated chicken breast fillets under isothermal and dynamic temperature conditions", Food Microbiol., 58, p. 148 (2016). https://doi.org/10.1016/j.fm.2015.11.009.
71. Song, H., Kim, J., Kim, B.S., et al. "Development of a food temperature prediction model for real time food quality assessment", Int. J. Refrig., 98, pp. 468-479 (2019). https://doi.org/10.1016/j.ijrefrig.2018.11.032.
72. Raab, V., Bruckner, S., Beierle, E., et al. "Generic model for the prediction of remaining shelf life in support of cold chain management in pork and poultry supply chains", J. Chain Netw. Sci., 8(1), pp. 59-73 (2008). https://doi.org/10.3920/JCNS2008.x089.
73. Van der Sman, R.G.M. "Simple model for estimating heat and mass transfer in regular-shaped foods", J. Food Eng., 60(4), pp. 383-390 (2003). https://doi.org/10.1016/S0260-8774(03)00061-X.
74. Chan, F.T.S., Wang, Z.X., Goswami, A., et al. "Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations", Int. J. Prod. Res., 58(17), pp. 5155-5174 (2020). https://doi.org/10.1080/00207543.2019.1701209.
75. Giri, B.C. and Masanta, M. "Developing a closedloop supply chain model with price and quality dependent demand and learning in production in a stochastic environment", Int. J. Syst. Sci. Oper. Logist., 7(2), pp. 147-163 (2020). https://doi.org/10.1080/23302674.2018.1542042.
76. Zhang, M., Guo, H., Huo, B., et al. "Linking supply chain quality integration with mass customization and product modularity", Int. J. Prod. Econ., 207, pp. 227-235 (2019). https://doi.org/10.1016/j.ijpe.2017.01.011.
77. Mercier, S., Villeneuve, S., Mondor, M., et al. "Time-temperature management along the food cold chain: A review of recent developments", Compr. Rev. Food Sci. Food Saf., 16(4), pp. 647-667 (2017). https://doi.org/10.1111/1541-4337.12269.
78. "Cargo Handbook-the world's largest cargo transport guidelines website", https://www.cargohandbook.com/Welcome-to- CargoHandbook.
79. Sahinidis, N.V. "BARON: A general purpose global optimization software package", J. Glob. Optim., 8(2), pp. 201-205 (1996). https://doi.org/10.1007/BF00138693.
80. Fibich, G., Gavious, A., and Lowengart, O. "Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects", Oper. Res., 51(5), pp. 721-734 (2003). https://doi.org/10.1287/opre.51.5.721.16758.
81. Rong, A., Akkerman, R., and Grunow, M. "An optimization approach for managing fresh food quality throughout the supply chain", Int. J. Prod. Econ., 131(1), pp. 421-429 (2011). https://doi.org/10.1016/j.ijpe.2009.11.026.