References and Notes
[1] Wu, F., El.Refaie, A.M. “Permanent magnet vernier machine: a review”, IET Electric Power Applications,
13 (2), pp. 127–137 (2019).
[2] Zhao,W., Du, K., Xu, L. “Design considerations of fault-tolerant permanent magnet vernier machine”, IEEE
Transactions on Industrial Electronics, 67 (9), pp. 7290–7300 (2019).
[3] Siddiqi, M.R., Ullah, Z., Hur, J. “Torque characteristics analysis of dual-airgap spoke-type permanentmagnet
vernier machine considering pole ratio effect”, Electrical Engineering, 102 (3), pp. 1405–1412
(2020).
[4] Song, Z., Liu, C., Chai, F., et al. “Modular design of an efficient permanent magnet vernier machine”, IEEE
Transactions on Magnetics, 56 (2), pp. 1–6, (2020).
[5] Song, X., Zhao, J., Song, J., et al. “Local demagnetization fault recognition of permanent magnet synchronous
linear motor based on s-transform and pso–lssvm”, IEEE Transactions on Power Electronics, 35
(8), pp. 7816–7825 (2020).
[6] Barmpatza, A.C., Kappatou, J.C. “Study of the total demagnetization fault of an afpm wind generator”, IEEE
Transactions on Energy Conversion, 36 (2), pp. 725–736 (2020).
[7] Goktas, T., Zafarani, M., Akin, B. “Discernment of broken magnet and static eccentricity faults in permanent
magnet synchronous motors”, IEEE Transactions on Energy Conversion, 31 (2), pp. 578–587 (2016).
21
[8] Casadei, D., Filippetti, F., Rossi, C., et al. “Magnets faults characterization for permanent magnet synchronous
motors”, IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics
and Drives, Cargese, France, pp. 1–6 (2009).
[9] Li, G., Ren, B., Zhu, Z., et al. “Demagnetization withstand capability enhancement of surface mounted
pm machines using stator modularity”, IEEE Transactions on Industry Applications, 54 (2), pp. 1302–1311
(2017).
[10] Li, W., Feng, G., Lai, C., et al.: “Demagnetization analysis of interior permanent magnet machines under
integrated charging operation”, IEEE Transactions on Industry Applications, 55 (5), pp. 5204–5213 (2019).
[11] Wu, L., Du, Y., Chen, Z., et al. “Influence of load characteristics on three-phase short circuit and demagnetization
of surface-mounted pm synchronous motor”, IEEE Transactions on Industry Applications, 56 (3),
pp. 2427–2440 (2020).
[12] Faiz, J., Mazaheri.Tehrani, E. “Demagnetization modeling and fault diagnosing techniques in permanent
magnet machines under stationary and nonstationary conditions: An overview”, IEEE Transactions on Industry
Applications, 53 (3), pp. 2772–2785 (2016).
[13] Alipour.Sarabi, R., Nasiri.Gheidari, Z., Oraee, H. “Development of a three-dimensional magnetic equivalent
circuit model for axial flux machines”, IEEE Transactions on Industrial Electronics, 67 (7), pp. 5758–5767
(2019).
[14] Niknafs, S., Shiri, A., Bagheri, S. “Modeling and analysis of flat double-sided linear permanent magnet
synchronous generator by magnetic equivalent circuit”, Journal of Electrical and Computer Engineering
Innovations (JECEI), 10 (1), pp. 17-24 (2021).
[15] Raminosoa, T., Farooq, J., Djerdir, A., et al. “Reluctance network modelling of surface permanent magnet
motor considering iron nonlinearities”, Energy Conversion and Management, 50 (5), pp. 1356–1361 (2009).
22
[16] Naderi, P. “Magnetic-equivalent-circuit approach for inter-turn and demagnetisation faults analysis in surface
mounted permanent-magnet synchronous machines using pole specific search-coil technique”, IET Electric
Power Applications, 12 (7), pp. 916–928 (2018).
[17] Abbaszadeh, K., Saied, S., Hemmati, S., et al. “Inverse transform method for magnet defect diagnosis in
permanent magnet machines”, IET Electric Power Applications, 8 (3), pp. 98–107 (2013).
[18] Sharouni, S., Naderi, P., Hedayati, M., et al. “Demagnetization fault detection by a novel and flexible modeling
method for outer rotor permanent magnet synchronous machine”, International Journal of Electrical
Power & Energy Systems, 116 (March), pp. 105539 (2020).
[19] Cao, D., Zhao, W., Ji, J., et al. “A generalized equivalent magnetic network modeling method for vehicular
dual-permanent-magnet vernier machines”, IEEE Transactions on Energy Conversion, 34 (4), pp. 1950–
1962 (2019).
[20] Gorginpour, H. “Design modifications for improving modulation flux capability of consequent-pole vernierpm
machine in comparison to conventional vernier-pm machines”, Scientia Iranica, 27 (6), pp. 3150–3161
(2020).
[21] Cao, D., Zhao, W., Ji, J., et al. “Parametric equivalent magnetic network modeling approach for multiobjective
optimization of pm machine”, IEEE Transactions on Industrial Electronics, 68 (8), pp. 6619–6629
(2019).
[22] Zhu, Y., Liu, G., Xu, L., et al. “A hybrid analytical model for permanent magnet vernier machines considering
saturation effect”, IEEE Transactions on Industrial Electronics, 69 (2), pp. 1211–1223 (2021)
[23] Ghods, M., Faiz, J., Bazrafshan, M., et al. “A mesh design technique for double stator linear pm vernier
machine based on equivalent magnetic network modeling”, IEEE Transactions on Energy Conversion, Early
View (2021).
[24] Yao, T., Zhao, W., Bian, F., et al. “Design and analysis of a novel modular-stator tubular permanent-magnet
vernier motor”, IEEE Transactions on Applied Superconductivity, 28 (3), pp. 1–5 (2018).
23
[25] Rostami, M., Naderi, P., Shiri, A. “Modeling and analysis of variable reluctance resolver using magnetic
equivalent circuit”, COMPEL: Int J for Computation and Maths in Electrical and Electronic Eng, 40 (4),
pp. 921–939 (2021).
[26] Nguyen, P.B., Choi, S.B. “A new approach to magnetic circuit analysis and its application to the optimal
design of a bi-directional magnetorheological brake”, Smart Materials and Structures, 20 (12), pp. 125003
(2011).
[27] Xu, L., Zhao, W., Liu, G., et al. “Design optimization of a spoke-type permanent-magnet vernier machine
for torque density and power factor improvement”, IEEE Transactions on Vehicular Technology, 68 (4),
pp. 3446–3456 (2019).