References:
[1] Lu, L., Zhang, J., Han, J. and Wang, H. “Time-optimal tool motion planning with tool-tip kinematic constraints for robotic machining of sculptured surfaces”, Robotics and Computer-Integrated Manufacturing,65, pp.101969 (2020).
[2] Andersson, J.E. and Johansson, G. “Robot control for wood carving operations”, Mechatronics, 11, pp.475-490 (2001).
[3] Yin, F.C., Ji, Q.Z. and Wang, C.Z. “Research on machining error prediction and compensation technology for a stone-carving robotic manipulator”, International Journal of Advanced Manufacturing Technology, 115, pp.1683-1700 (2021).
[4] Yin, F.C., Ji, Q.Z. and Jin, C.W. “An improved QPSO-SVM-based approach for predicting the milling force for white marble in robot stone machining”, Journal of Intelligent& Fuzzy Systems, 41, pp.1589-1609 (2021).
[5] Wen, S.H., Zheng, W., Jia, S.D., Ji, Z. X., Han, P. C. and Lam, H. K. “Unactuated force control of 5-DOF parallel robot based on fuzzy PI”, International Journal of Control, Automation and Systems, 18(6), pp.1629-1640 (2020).
[6] Garrido, R. and Trujano, M.A. “Stability analysis of a visual PID controller applied to a planar robot”, International Journal of Control, Automation and Systems, 17(6), pp.1589-1598 (2019).
[7] Su, Y. X., Sun, D. and Duan, B. Y. “Design of an enhanced nonlinear PID controller”, Mechatronics, 15(8), pp.1005-1024 (2005).
[8] Van, M., Do, X.P, and
Mavrovouniotis, M. “Self-tuning PID-nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators”, ISA Transactions, 96, pp.60-68 (2020).
[9] Nohooji, H.R. “Constrained neural adaptive PID control for robot manipulators”, Journal of the Franklin Institute, 357(7), pp.3907-3923 (2020).
[10] Huang, H., Zhang, T, and Yang, C. “Motor learning and generalization using broad learning adaptive neural control”, IEEE Transactions on Industrial Electronics, 67, pp.8608-8617 (2020).
[11] Liu, C.X., Wen, G.L., Zhao, Z.J, and Sedaghtai, R. “Modeling, control, and simulation of a SCARA PRR-type robot manipulator”, IEEE Transactions on Cybernetics, 99, pp.1-8. (2020).
[12] He, W, and Dong, Y.T. “Adaptive fuzzy neural network control for a constrained robot using impedance learning”, EEE Transactions on Neural Networks and Learning Systems, 29(4), pp.1174-1186. (2018).
[13] Zhang, T., Wang, X., Xu, X, and Chen, L.P. “GCB-Net: Graph convolutional broad network and its application in emotion recognition”, IEEE Transactions on Affective Computing, 99, pp.1-1. (2019).
[14] Li, C.G., Cui, W., Yan, D. D., Wang, Y. and Wang, C.M. “Adaptive dynamic surface control of a flexible-joint robot with parametric uncertainties”, Scientia Iranica, 26(5), pp.2749-2759. (2019).
[15] He, W., Dong, Y. and Sun, C. “Adaptive neural impedance control of a robotic manipulator with input saturation”, IEEE Transactions on Systems Man Cybernetics-Systems, 46, pp. 334-344 (2016).
[16] Chen, W. and Jiao, L. “Adaptive tracking for periodically time-varying and nonlinearly parameterized systems using multilayer neural networks”, IEEE Transactions on Neural Networks and Learning Systems, 21(2), pp. 345-351(2010).
[17] Talole, S. E., Kolhe, J. P. and Phadke, S. B. “Extended-state-observer-based control of flexible-joint system with experimental validation”, IEEE Transactions on Industrial Electronics, 57(4), pp. 1411-1419, (2010).
[18] Liu, Y., Liu, H. and Meng, Y.N. “Active disturbance rejection control for a multiple-flexible-link manipulator”, Journal of Harbin Institute of Technology, 25(1), pp. 18-28, (2018).
[19] Saeed, A. and Barjuei, E.S. “Linear quadratic optimal controller for cable-driven parallel robots”, Frontiers of Mechanical Engineering, 10, pp. 344-351, (2014).
[20] Pan, H. J. and Xin, M. “Nonlinear robust and optimal control of robot manipulators”, Nonlinear Dynamics, 76, pp. 237-254, (2014).
[21] Zhang, H., Umenberger, J. and Hu, X.M. “Inverse optimal control for discrete-time finite-horizon linear quadratic regulators”, Automatica, 110, pp.108593, (2019).
[22] Li, Y.B., Yao, Y. and Hu, X.M. “Continuous-time inverse quadratic optimal control problem”, Automatica, 117, pp.108977, (2020).
[23] Xu, J.Y., Liu, H.P. and Zhou, J. H. “Tracking robustness of model-reference inverse linear quadratic (MR-ILQ) optimal current-control for permanent magnet synchronous motor”, Control Theory & Applications, 25(6), pp. 1081-1084, (2008).
[24] Hu, Y.J., Sun, J., Wang, Q.L. and Yin, F.C. “Characteristic analysis and optimal control of the thickness and tension system on tandem cold rolling”, International Journal of Advanced Manufacturing Technology, 101, pp. 2297-2312, (2019).
[25] Liu, C.X., Zhao, Z.J., and Wen, G.L. “Adaptive neural network control with optimal number of hidden nodes for trajectory tracking of robot manipulators”, Neurocomputing, 350, pp.60-68 (2019).
[26] Van, M., Do, X.P., and
Mavrovouniotis, M. “Self-tuning PID-nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators”, ISA Transactions, 96, pp.60-68 (2019).
[27] Wang, G.C., Wang, W.C., and Yan, Z.G. “Linear quadratic control of backward stochastic differential equation with partial information”, Applied Mathematics and Computation, 403, pp.126164 (2021).
[28] Yu, C.P., Li, Y., and Fang, H. “System identification approach for inverse optimal control of finite-horizon linear quadratic regulators”, Automatica, 129, pp.109636 (2021).