Sensitivity analysis for Walters-B nanoliquid flow over a radiative Riga surface by RSM

Document Type : Article

Authors

1 School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

2 Department of Physics, Faculty of Sciences, University of 20 Ao^ut 1955-Skikda, Skikda, Algeria

3 Department of Statistics, Quaid-I-Azam University 4250 Islamabad 44000, Pakistan

4 Binjiang College, Nanjing University of Information Science and Technology, Wuxi 214105, China

Abstract

In this examination, a sensitivity analysis is implemented using response surface strategies to control the Walters-B nanofluid stagnant point flow caused by a Riga surface. An electromagnetic actuator is known as Riga-surface. The Buongiorno model is used to construct the mathematical model, which includes a Newtonian heating condition as well as radiation effects. Via the fundamental laws of mass, momentum, and energy, transformation is incorporated to obtain nonlinear ordinary differential equations. To solve the governing system, the numerical shooting approach along with Runge-Kutta scheme is used to solve the governing system. A comparison with existing research is made, and the results are obtained to be in strong agreement. Focusing on the response of local Nusselt number to variation of input variables, an experimental structure is incorporated by sensitivity analysis. As underline, the LNN is quite sensitive to radiation number rather than other parameters of interest. Meanwhile, it is demonstrated that sensitivity of LNN to Brownian number decreases with growing thermophoresis number but sensitivity value is also vary from positive to negative for all values of Brownian number. The results are assumed to provide a tentative guidance for possible lab-based experiments.

Keywords


References:
References:
[1]    Pordanjani, A. H., Vahedi, S. M., Rikhtegar, F. and Wongwises, S. "Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology", J. Therm. Anal. Calorim., 135, pp. 1031-1045 (2019). https://doi.org/10.1007/s10973-018-7652-6.
[2]    Marzougui, S., Mebarek-Oudina, F., Assia, A., Magherbi, M., Shah, Z. and Ramesh, K. "Entropy Generation on Magneto-Convective Flow of Copper-Water Nanofluid in a Cavity with Chamfers", J. Therm. Anal. Calorim., 143(3), pp. 2203-2214 (2021). https://doi.org/10.1007/s10973-020-09662-3.
[3]    Rajashekhar, C., Mebarek-Oudina, F., Vaidya, H., Prasad K.V., Manjunatha, G. and Balachandra, H. "Mass and heat transport impact on the peristaltic flow of Ree-Eyring liquid whit variable properties for hemodynamic flow", Heat Transfer, 50(5), pp. 5106-5122 (2021). https://doi.org/10.1002/htj.22117.
[4]    Mebarek-Oudina, F. "Convective Heat Transfer of Titania Nanofluids of different base fluids in Cylindrical Annulus with discrete heat Source", Heat Transfer, 48, pp. 135-147 (2019).
[5]    Dehkordi, K. S., Fazilati, M. A., Hajatzadeh, A. "Surface Scraped Heat Exchanger for cooling Newtonian fluids and enhancing its heat transfer characteristics, a review and a numerical approach", Applied Thermal Engineering, 87, pp. 56-65 (2015).
[6]    Mebarek-Oudina, F., Bessaih, R., Mahanthesh, B., Chamkha, A.J. and Raza, J. "Magneto-Thermal-Convection Stability in an Inclined Cylindrical Annulus filled with a Molten Metal", International Journal of Numerical Methods for Heat & Fluid Flow, 31(4), pp. 1172-1189 (2021) .  https://doi.org/10.1108/HFF-05-2020-0321.
[7]    Choi, S.U. and Eastman, J. A. "Enhancing thermal conductivity of fluids with nanoparticles", No. ANL/MSD/CP-84938, CONF-951135--29 (Argonne National Lab., IL, 1995) https://www.osti.gov/servlets/purl/196525.
[8]    Swain, K., Mebarek-Oudina, F. and M.Abo-Dahab, S. "Influence of MWCNT/Fe3O4 hybrid-nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions", J. Therm. Anal.  Calorim., 2021; https://doi.org/10.1007/s10973-020-10432-4.
[9]    Shafiq, A., Mebarek-Oudina, F., Sindhu, T. N. and Abidi, A. "A study of dual stratification on stagnation point Walters' B nanofluid flow via radiative Riga plate: a statistical approach", Eur. Phys. J. Plus, 136, 407 (2021).  https://doi.org/10.1140/epjp/s13360-021-01394-z.
[10]    Jabeen,  S., Hayat, T. and Alsaedi, A. "Entropy generation optimization and activation energy in flow of Walters-B nanomaterial", Scientia Iranica, 28(3), 1917-1925 (2021).
[11]    Abu-Nada, E. "Simulation of heat transfer enhancement in nanofluids using dissipative particle dynamics", Int. Communications in Heat and Mass Transfer, 85, pp. 1-11 (2017).
[12]    Zaim, A., Aissa, A., Mebarek-Oudina, F., Mahanthesh, B., Lorenzini, G. and Sahnoun, M. "Galerkin finite element analysis of magneto-hydrodynamic natural convection of Cu-water nanoliquid in a baffled U-shaped enclosure", Propulsion and Power Research, 9(4), pp. 383-393 (2020). https://doi.org/10.1016/j.jppr.2020.10.002.
[13]    Dadheech, P. K., Agrawal, P., Mebarek-Oudina, F., H. Abu-Hamdeh, N. and Sharma A. "Comparative heat transfer analysis of MoS2/C2H6O2 and MoS2 - SiO2 / C2H6O2 nanofluids with natural convection and inclined MHD", Journal of Nanofluids, 9(3), pp. 161-167 (2020). https://doi.org/10.1166/jon.2020.1741.
[14]    Rashad, A. M., Chamkha, A.J., Ismael, M. and Salah, T. "Magnetohydrodynamics Natural Convection in a Triangular Cavity Filled With a Cu-Al2O3/Water Hybrid Nanofluid With Localized Heating From Below and Internal Heat Generation", J. Heat Transf., 140(7), 072502 (2018).
[15]    Khan, U., Zaib, A. and Mebarek-Oudina, F. "Mixed convective magneto flow of SiO2-MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: Stability analysis", Arab. J. Sci. Eng., 45, pp. 9061-9073 (2020). https://doi.org/10.1007/s13369-020-04680-7.
[16]    Shafiq, A., Rasool, G. and Khalique, C. M. "Significance of thermal slip and convective boundary conditions in three dimensional rotating Darcy-Forchheimer nanofluid flow. Symmetry, 12 (5), 741(2020).
[17]    Abo-Dahab, S. M., Abdelhafez, M. A., Mebarek-Oudina, F. and Bilal, S. M. "MHD Casson Nanofluid Flow over Nonlinearly Heated Porous Medium in presence of Extending Surface effect with Suction/Injection", Indian J. Phys., 2021, https://doi.org/10.1007/s12648-020-01923-z.
[18]    Selimefendigil, F. and Öztop, H. F. "Mixed convection in a partially heated triangular cavity filled with nanofluid having a partially flexible wall and internal heat generation", J. Taiwan Inst. Chemical Engineers, 70, pp. 168-178 (2017).
[19]    Das, S. K., Choi, S. U. S. and Patel H. E. "Heat Transfer in Nanofluids-A Review", Heat Transfer Engineering, 27(10), pp. 3-19 (2006), https://doi.org/10.1080/01457630600904593.
[20]    Buongiorno, J. "Convective Transport in Nanofluids", J. Heat Transfer, 128, pp. 240-250 (2006).
[21]    Daungthongsuk, W. and Wongwises, S. "A critical review of convective heat transfer of nanofluids", Renewable and Sustainable Energy Reviews, 11(5), pp. 797-817 (2007).
[22]    Mebarek-Oudina, F., Reddy, N. and Sankar, M. "Heat Source Location Effects on Buoyant Convection of Nanofluids in an Annulus", Advances in Fluid Dynamics, Lecture Notes in Mechanical Engineering, pp. 923-937 (2021). https://doi.org/10.1007/978-981-15-4308-1_70.
[23]    B. V. Pushpa, M. Sankar, F. Mebarek-Oudina, Buoyant convective flow and heat dissipation of Cu-H2O, nanoliquids in an annulus through a thin baffle, Journal of Nanofluids, 10(2)(2021) 292-304. https://doi.org/10.1166/jon.2021.1782.
[24]    Marzougui, S., Mebarek-Oudina, F., Magherbi, M. and A. Mchirgui, "Entropy Generation and Heat transport of Cu-water Nanoliquid in Porous lid-driven Cavity through Magnetic Field", International Journal of Numerical Methods for Heat & Fluid Flow, (2021). https://doi.org/10.1108/HFF-04-2021-0288.
[25]    Atif, S. M., Hussain,  S. and Sagheer, M. "Effect of thermal radiation on MHD micropolar Carreau nanofluid with viscous dissipation, Joule heating, and internal heating", Scientia Iranica, 26(6), pp. 3875-3888 (2019).
[26]    Jabeen, S. Hayat,  T. Alsaedi,  A. Alhodaly, M. Sh. "Consequences of activation energy and chemical reaction in radiative flow of tangent hyperbolic nanoliquid", Scientia Iranica, 26(6), pp. 3928-3937(2019).
[27]    Warke, A. S., Ramesh, K., Mebarek-Oudina, F. and Abidi, A. "Numerical Investigation of Nonlinear Radiation with Magnetomicropolar Stagnation Point Flow past a Heated Stretching Sheet", Journal of Thermal Analysis and Calorimetry, (2021). https://doi.org/10.1007/s10973-021-10976-z.
[28]    Mebarek-Oudina, F., Fares, R., Aissa, A., Lewis, R. and Abu-Hamdeh, N. "Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall", International Communications in Heat and Mass Transfer, 125, 105279 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105279.
[29]    Djebali, R., Mebarek-Oudina, F. and Choudhari, R. "Similarity solution analysis of dynamic and thermal boundary layers : further formulation along a vertical flat plate", Physica Scripta, 96(8), 085206 (2021). https://doi.org/10.1088/1402-4896/abfe31.
[30]    Mebarek-Oudina, F., Aissa, A., Mahanthesh, B. and Öztop, F. H. "Heat Transport of Magnetized Newtonian Nanoliquids in an Annular Space between Porous Vertical Cylinders with Discrete Heat Source", International Communications in Heat and Mass Transfer, 117, 104737 (2020), http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104737.
[31]    Shafiq, A., Rasool, G., Khalique C. M. and Aslam, S. "Second grade bioconvective nanofluid flow with buoyancy effect and chemical reaction", Symmetry, 12(4), 621 (2020).
[32]    Swain, K., Mahanthesh B. and Mebarek-Oudina, F. "Heat transport and stagnation-point flow of magnetized nanoliquid with variable thermal conductivity with Brownian moment and thermophoresis aspects", Heat Transfer, 50(1), pp. 754-764 (2021). https://doi.org/10.1002/htj.21902.
[33]    Gailitis, A. and Lielausis, O. "On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte", Appl. Magnetohydrodyn., 12, pp. 143-146 (1961).
[34]    Ahmad, A., Asghar, S. and Afzal, S. "Flow of nanofluid past a Riga plate", J. Magn. Magn. Mater., 402, pp. 44-48 (2016).
[35]    Dhif, K., Mebarek-Oudina, F., Chouf, S., Vaidya, H. and Chamkha, A. J. "Thermal Analysis of the Solar Collector Cum Storage System using a Hybrid-Nanofluids", Journal of Nanofluids,10(4), pp. 634–644 (2021). https://doi.org/10.1166/jon.2021.1807.
[36]    Abbas, T., Hayat, T., Ayub, M., Bhatti, M.M. and Alsaedi, A. "Electromagnet hydrodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism", Neural Comput. Appl., 31(6), pp. 1905-1913 (2019).
[37]    Nadeem, S. Ahmad, S. Khan, M.N. "Mixed convection flow of hybrid nanoparticles along a Riga surface with Thomson and Troian slip condition, J. Therm. Anal. Calorim., 143, pp. 2099–2109 (2021). https://doi.org/10.1007/s10973-020-09747-z.
[38]    Ganesh, N. V., Qasem, M. A., Sara, A.F. and Shymaa, D. "Riga - plate flow of γ Al2O3-water/ethylene glycol with effective Prandtl number impacts", Heliyon, 5(5),  e01651 (2019).
[39]    Rasool, G., Zhang T. and Shafiq, A. "Second grade nanofluidic flow past a convectively heated vertical Riga plate", Physica Scripta, 94(12), 125212 (2019).
[40]    Shafiq, A., Rasool, G,. Phali L. and Khalique, C. M. "Thermosoluted Marangoni convective flow towards a permeable Riga surface, Open Physics, 18 (1) (2020) 535-544.
[41]    Zhang, L., Bhatti, M. M., Ellahi, R. and Michaelides, E. E. "Oxytactic microorganisms and thermo-bioconvection nanofluid flow over a porous Riga plate with Darcy-Brinkman-Forchheimer medium", J. Non Equilib. Thermodyn., 45(3), pp. 257-268 (2020).
[42]    Bhatti, M. M. and Michaelides, E. E. "Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate", J. Therm. Anal. Calorim., (2020), https://doi.org/10.1007/s10973-020-09492-3.
[43]    Shafiq, A., Zari, I., Khan, T. S., Khan, I., Seikh, A. H. and Sherif, E.M. "Marangoni Driven Boundary Layer Flow of Carbon Nanotubes towards a Riga Plate", Frontiers in Physics, 7, 215 (2019).
[44]    Shirvan, K. M., Mamourian, M., Mirzakhanlari, S. and Ellahi, R. "Two phase simulation and sensitivity analysis of effective parameters on combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by RSM", Journal of Molecular Liquids, 220, pp. 888-901 (2016). https://doi.org/10.1016/j.molliq.2016.05.031.
[45]    Akbarzadeh, M., Rashidi, S., Bovand, M. and Ellahi, R. "A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel",  220, pp. 1-13 (2016). https://doi.org/10.1016/j.molliq.2016.04.058.
[46]    Bovand, M., Valipour, M. S., Dincer K. and Eiamsa-Ard, S. "Application of response surface methodology to optimization of a standard ranque-hilsch vortex tube refrigerator", Applied Thermal Engineering, 67(1-2) pp. 545-553 (2014). https://doi.org/10.1016/j.applthermaleng.2014.03.039.
[47]    Rashidi, S. Bovand M. and Esfahani, J. A. "Structural optimization of nanofluid flow around an equilateral triangular obstacle", Energy, 88, pp. 385-398 (2015). https://doi.org/10.1016/j.energy.2015.05.056.
[48]    Shafiq, A., Sindhu T. N. and Khalique, C. M. "Numerical investigation and sensitivity analysis on bioconvective tangent hyperbolic nanofluid flow towards stretching surface by response surface methodology", Alexandria Engineering Journal, 59(6), pp. 4533-4548 (2020).
[49]    Hayat, T., Shafiq, A., Imtiaz, M. and Alsaedi, A. "Impact of melting phenomenon in the Falkner-Skan wedge flow of second grade nanofluid: A revised model", Journal of Molecular Liquids, 215, pp. 664-670 (2016).
[50]    Mahapatra, T. and Gupta, A. "Heat transfer in stagnation-point flow towards a stretching sheet", Heat and Mass Transfer, 38, pp. 517-521 (2002).