References:
[1] Kiers, H.A.L., and Smilde, A.K. “Some theoretical results on second-order calibration methods for data with and without rank overlap”, J. Chemom., 9, pp. 179-195 (1995).
[2] Sajjadi, S.M., Abdollahi, H., Rahmanian, R., et al. “Quantifying aflatoxins in peanuts using fluorescence spectroscopy coupled with multi-way methods: Resurrecting second-order advantage in excitation-emission matrices with rank overlap problem”, Spectrochim. Acta A, 156, pp. 63-69 (2016).
[3] Khani, R., Rahmanian, R., and Motlagh, N.V. “UV-Visible spectrometry and multivariate calibration as a rapid and reliable tool for simultaneous quantification of ternary mixture of phenolic acids in fruit juice samples”, Food Anal. Method, 9, pp. 1112-1119 (2016).
[4] Asadpour-Zeynali, K., Sajjadi, S.M., Taherzadeh, F., et al. “Analysis of variation matrix array by bilinear least squares-residual bilinearization (BLLS-RBL) for resolving and quantifying of foodstuff dyes in a candy sample”, Spectrochim. Acta A, 123, pp. 273-281 (2014).
[5] Khani, R., Ghasemi, J.B., Shemirani, F., et al. “Application of bilinear least squares/residual bilinearization in bulk liquid membrane system for simultaneous multicomponent quantification of two synthetic dyes”, Chemom. Intell. Lab. Syst., 144, pp. 48-55 (2015).
[6] Azzouz, T., and Tauler, R. “Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples”, Talanta, 74, pp. 1201-1210 (2008).
[7] Loftsson, T., and Brewster, M.E. “Pharmaceutical applications of cyclodextrins. Drug solubilization and stabilization”, J. Pharm. Sci., 85, pp. 1017-1025 (1996).
[8] Del Valle, E.M.M. “Cyclodextrins and their uses: A review”, Process Biochem., 39, pp. 1033-1046 (2004).
[9] Szente, L., Szejtli, J., and Kis, G.L. “Spontaneous opalescence of aqueous gamma-cyclodextrin solutions-complex-formation or self-aggregation”, J. Pharm. Sci., 87, pp. 778-781 (1998).
[10] Saldanha, E., Joseph, N., Kumar, A., et al. “Polyphenols in human health and disease”, Chapter 31 - Polyphenols in the prevention of acute pancreatitis: Preclinical Observations., 1, pp. 427-433 (2014).
[11] Shivashankara, A.R., Sunitha, V., Bhat, H.P., et al. “Bioactive food as dietary interventions for liver and gastrointestinal disease”, Chapter 47 - Phytochemicals are effective in the prevention of ethanol-induced hepatotoxicity: Preclinical Observations., 1, pp. 743-758 (2013).
[12] Hao, D.C., Gu, X.J., and Xiao, P.G. “14 - Phytochemical and biological research of Salvia medicinal resources”,
Medicinal Plants, Chemistry. Biology and Omics, 1, pp. 587-639 (2015).
[13] Magnani, C., Isaac, V., Corrêa, M.A., et al. “Caffeic acid: A review of its potential use in medications and cosmetics”, Anal. Methods, 6, pp. 3203-3210 (2014).
[14] Zadernowski, R., Czaplicki, S., and Naczk, M. “Phenolic acid profiles of mangosteen fruits (Garcinia mangostana)”, Food Chem., 112, pp. 685-689 (2009).
[15] Saraji, M., and Mousavinia, F. “Single-drop microextraction followed by in-syringe derivatization and gas chromatography-mass spectrometric detection for determination of organic acids in fruits and fruit juices”, J. Sep. Sci., 29, pp. 1223-1229 (2006).
[16] Helmja, K., Vaher, M., Puessa, T., et al. “Bioactive components of the hop strobilus: Comparison of different extraction methods by capillary electrophoretic and chromatographic methods”, J. Chromatogr. A, 1155, pp. 222-229 (2007).
[17] Huang, H.Y., Lien, W.C., and Chiu, C.W. “Comparison of microemulsion electrokinetic chromatography and micellar electrokinetic chromatography methods for the analysis of phenolic compounds”, J. Sep. Sci., 28, pp. 973-981 (2005).
[18] Klejdus, B., Vacek, J., Lojkova, L., et al. “Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases”, J. Chromatogr. A, 1195, pp. 52-59 (2008).
[19] Makris, D.P., Kallithraka, S., and Mamalos, A. “Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents”, Talanta, 70, pp. 1143-1152 (2006).
[20] Linder, M., and Sundberg, R. “Precision of prediction in second-order calibration, with focus in bilinear regression method”, J. Chemom., 16, pp. 12-27 (2002).
[21] Damiani, P.C., Nepote, A.J., Bearzotti, M., et al. “A test field for the second-order advantage in bilinear least-squares and parallel factor analyses: fluorescence determination of ciprofloxacin in human urine”, Anal. Chem., 76, pp. 2798-2806 (2004).
[22] Leurgans, S., Ross, R., and Abel, R. “Decomposition for Three-Way Arrays”, J. Matrix Anal. Appl., 14, pp. 1064-1083 (1993).
[23] Olivieri, A.C., Wu, H., and Yu, R. “MVC2: A MATLAB graphical interface toolbox for second-order multivariate calibration”, Chemom. Intell. Lab. Syst., 96, pp. 246-251 (2009).
[24] Baglole, K.N., Boland, P.G., and Wagner, B.D. “Fluorescence enhancement of curcumin upon inclusion into parent and modified cyclodextrins”, J. Photoch. Photobio. A., 73, pp. 230-237 (2005).
[25] Fini, P., Loseto, R., Catucci, L., et al. “Agostiano, Study on the aggregation and electrochemical properties of Rose Bengal in aqueous solution of cyclodextrins”, Bioelectrochem., 70, pp. 44-49 (2007).
[26] Mikani, M., Talaei, S., Rahmanian, R., et al. “Sensitive electrochemical sensor for urea determination based on F-doped SnO2 electrode modified with ZnO-Fe3O4 nanoparticles transducer: Application in biological fluids”, J. Electroanal. Chem., 840, pp. 285-294 (2019).
[27] Mikani, M., Rahmanian, R., Karimnia, M., et al. “Novel I–V disposable urea biosensor based on a dip-coated hierarchical magnetic nanocomposite (Fe3O4@SiO2@NH2) on FTO Layer”, J. Chin. Chem. Soc., 64, pp. 1446-1459 (2017).
[28] Mikani, M., Torabizadeh, H., and Rahmanian, R. “Magnetic soy protein isolate-bovine serum albumin nanoparticles preparation as a carrier for inulinase immobilization”, IET Nanobiotechnol., 12, pp. 633-639 (2018).
[29] Mikani, M., Torabizadeh, H., and Rahmanian, R. “Inulin hydrolysis by immobilized inulinase on functionalized magnetic nanoparticles using soy protein isolate and bovine serum albumin”, J. Chin. Chem. Soc., 65, pp. 771-779 (2018).
[30] Moharamzadeh, M.R., Salar Amoli, H., Rahmanian, R., et al. “Cu2+-doped ITO as a novel efficient, transparent, and fast-response transducer for ammonia sensing”, J. Chin. Chem. Soc., 65, pp. 735-742 (2018).
[31] Mikani, M., and Rahmanian, R. “Sensitive biosensor based on Urease/In2O5Sn nano-coated fluorinated SnO2 for urea detection in blood serum”, J. Anal. Chem., 76, pp. 981-992 (2021).
[32] Hassan-Zadeh, B., Rahmanian, R., Salmani, M.H., et al. “Functionalization of synthesized nanoporous silica and its application in malachite green removal from contaminated water”, J. environ. health sustain. dev., 6, pp. 1311-1320 (2021).