References:
[1] Çaydaş, U. and Hasçalik, A. "A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method", J. Mater. Process. Techno. 2(2), pp. 574 –582, (2008).
[2] Azmir, M.A. and Ahsan, A.K. "Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining", J. Mater. Process. Techno. 198 (3), pp.122–128, (2008).
[3] Ma, C. and Deam, R.T. "A correlation for predicting the kerf profile from abrasive water jet cutting", Experimental Thermal and Fluid Science. 30(5), pp.337–343, 2006.
[4] Jegaraj, J.J.R. and Babu, N.R. "A soft computing approach for controlling the quality of cut with abrasive waterjet cutting system experiencing orifice and focusing tube wear", J. Mater. Process. Techno. 185(3), pp.217–227, (2007).
[5]
Balyakin, A. and
Goncharov, E. “Investigation of the process of waterjet processing of samples obtained by SLM”, Materialstoday proceeding.
38(4), pp. 1607-1612, (2021).
[6]
Guo, J.
Chen, Z. and
Dai, Y. “Numerical study on self-propulsion of a waterjet propelled trim ran”,
Ocean Engineering. 195(1), pp. 106-121, (2021).
[7] Kolahan, F. and Khajavi, H. “Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis”, World Academy of Science, Engineering and Technology. 59(2), pp. 488-493, (2009).
[9]
Srinivasan, R.
Jacob, V.
Muniappan, A.
Madhu, S. and
Sreenevasulu, M. “Modeling of surface roughness in abrasive water jet machining of AZ91 magnesium alloy using Fuzzy logic and Regression analysis”, Materialstoday proceeding, 22(3), pp. 1059-1064, (2020).
[10]
Ahmed, T.M.
Mesalamy, A.S.E.
Youssef, A.
and Midany, T.T.E. “Improving surface roughness of abrasive waterjet cutting process by using statistical modeling, CIRP Journal of Manufacturing Science and Technology, 22(4), pp. 30-36, (2018).
[14] Elsheikh, A.H. Sharshir, S.W. Kabeel, A.E. and Sathyamurthy, R. “Application of Taguchi method to determine the optimal water depth and glass cooling rate in solar stills”, Scientia Iranica B, 28(2), pp. 731-742, (2021).
[15]
Delir Nazarlou, R.
Nemati Akhgar, B. and
Omidbakhsh, F. “Optimizations of friction stir welding parameters with Taguchi method for the maximum electrical conductivity in Al-1080 welded sections”, Scientia Iranica B, in press, (2021).
[16]
Özdemir, A. and
Turkoz, M. “Development of a D-optimal design-based 0–1 mixed-integer nonlinear robust parameter design optimization model for finding optimum design factor level settings”,
Computers & Industrial Engineering,
149(5), pp. 106-115, (2020).
[17]
Mohanty, S.
KrushnaMohanta, G.
KumarSenapati, A. and
CharanRath, T. “Taguchi grey relational analysis for optimal process parameter of low carbon steel welded by GTAW by using ER309L filler material”, materials today, In press, (2021).
[18] Azadi Moghaddam, M. and Kolahan, F. “Modeling and optimization of A-GTAW welding process using Box–behnken design and hybrid BPNN- PSO approach”, Journal of Process Mechanical Engineering, In press, (2021).
[19]
Yu, C.
Heidari, A.A. and
Chen, H. “A quantum-behaved simulated annealing algorithm-based moth-flame optimization method”, Applied Mathematical Modelling, 87(3), pp. 1-19, (2020).
[20]
Chandran, S.
Rajesh R.
and Anand, M.D. “Analysis of mechanical properties and optimization of laser beam welding parameters on dissimilar metal titanium (Ti6Al4V) and aluminium (A6061) by factorial and ANOVA techniques”, Materialstoday proceeding,
42 (2), pp. 508-514, (2021).
[21] Azadi Moghaddam, M. and Kolahan, F. “Modeling and optimization of A-GTAW process using back propagation neural network and heuristic algorithms", International Journal of Pressure Vessels and Piping, 194(5), pp. 1-13, (2021).