Study of UV-Vis absorption spectra of magnetic molecule tripyridinium bis[tetrabromidoferrate(III)] bromide with density functional formalisms

Document Type : Article


1 Department of Physics, Shahid Beheshti University, Tehran, Iran

2 Department of Condensed Matter, Faculty of Physics, Kharazmi University, Tehran, Iran

3 Department of Chemistry, Farhangian University, Tehran, Iran


The UV-Vis absorption spectra of the discrete magnetic molecules [py.H]3[FeBr4]2Br were calculated based on density functional theory with B3LYP exchange-correlation functional in acetonitrile solution. The molecule was dissolved dilutely in acetonitrile to ensure that its experimental response can be attributed to a single dispersed molecule without significant interaction to other molecules. The experimental UV-Vis absorption spectra show four typical peaks in UV region and three peaks in visible region. A number of different basis sets are employed to compare the experimental data with the theoretical absorption spectra on different levels of basis sets. The comparison of experimental data with theoretical computation shows that choosing 6-311++G** improves computational results mainly in visible region and makes little differences between results based on DFT and TDDFT in other wavelength domains, especially in UV wavelengths. The simulated results are of importance in simulating the response of these molecular magnets as a discrete asymmetric unit to applied light.


  • References:

    • Ohkoshi, S-i, Hashimoto, K. “Photo-magnetic and magneto-optical effects of functionalized metal polycyanides”, 2, 1, 71-88 (2001).
    • Xu, Y-K., Li, H., He, B-G. et al. “Electronic Structure and Magnetic Anisotropy of Single-Layer Rare-Earth Oxybromide”, ACS Omega5, 23, 14194-14201 (2020).
    • Gong, C., Li, L., Li, Z. et al. “Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals”. Nature546, 265- 269 (2017).
    • Sieklucka, B. and Pinkowicz, D. Eds., Molecular Magnetic Materials: Concepts and Applications, (Wiley, 2017).
    • Boukhvalov, D. W., Al-Saqer, M., Kurmaev, E. Z. et al. “Electronic structure of a Mn12molecular magnet: Theory and experiment” Rev. B 75, 014419 (2007).
    • Carlotto, S., Sambi, M., Sedona, F. et al. “A Theoretical Study of the Occupied and Unoccupied Electronic Structure of High- and Intermediate-Spin Transition Metal Phthalocyaninato (Pc) Complexes: VPc, CrPc, MnPc, and FePc. Nanomaterials11, 54 (2021).
    • Xue, Z. X., Qua, Y., Zan, Y. H. et al. “Broadening of the optical absorption spectra in ZnO nanowires induced by mixed-phase MgxZn1−xO shells” Journal of Applied Physics129, 024502 (2021).
    • Wang, H., Li, J., Li, K. et al. “Transition metal nitrides for electrochemical energy applications” Soc. Rev., 50, 1354-1390 (2021).
    • Verdaguer, “Rational synthesis of molecular magnetic materials: a tribute to Olivier Kahn” Polyhedron 20 1115 (2001).
    • Garino, C., Borfecchia, E., Gobetto, R. et al. “Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques” Chem. Rev. 277–278, 130-186 (2014).
    • Anak, B., Bencharif, M. and Rabilloud, F. “Time-dependent density functional study of UV-visible absorption spectra of small noble metal clusters (Cun, Agn, Aun, n = 2–9, 20)” RSC Adv. 4 13001-13011 (2014).
    • Pal, G., Pavlyukh, Y., Hübner, W. et al. “Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach” EPJ B 79, 327-334 (2011).
    • Dreuw, A. and Head-Gordon, M. “Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules” Rev. 105 4009-4037 (2005).
    • Runge, E., Gross, E. K. U. “Density-Functional Theory for Time-Dependent Systems” Rev. Lett. 52 997 (1984).
    • Rohringer, N., Peter, S. and Burgdorfer, J. “Calculating state-to-state transition probabilities within time-dependent density-functional theory” Rev. A 74 042512, 1 (2006).
    • Anouar, E. H., Osman, C. P., Frederic, J. et al. “UV/Visible spectra of a series of natural and synthesised anthraquinones: experimental and quantum chemical approaches” SpringerPlus 3 233, 1 (2014).
    • a) Ginsberg, A. P. and Robin, M. B. “The Structure, Spectra, and Magnetic Properties of Certain Iron Halide Complexes” Chem. 2 (4) 817-822 (1963). b) Zora, J. A., Seddon, K. R., Hitchcock, P. B. et al. “Magnetochemistry of the tetrahaloferrate(III) ions. 1. Crystal structure and magnetic ordering in bis[4-chloropyridinium tetrachloroferrate(III)]-4-chloropyridinium chloride and bis[4-bromopyridinium) tetrachloroferrate(III)]-4-bromopyridinium chloride” Inorg. Chem. 29 (18) 3302-3308 (1990). c) Lowe, C. B., Carlin, R. L., Schultz, A. J. et al. “Magnetochemistry of the tetrahaloferrate(III) ions. 2. Crystal structure and magnetic ordering in [4-Br(py)H]3Fe2Cl1.3Br7.7 and [4-Cl(py)H]3Fe2Br9. The superexchange paths in the A3Fe2X9 salts” Inorg. Chem. 29 (18) 3308-3315 (1990). d) Lowe, C. B., Schultz, A. J., Shaviv, R. et al. “Magnetochemistry of the Tetrahaloferrate(III) Ions. 7. Crystal Structure and Magnetic Ordering in (pyridinium)3Fe2Br9” Inorg. Chem. 33 (14) 3051 (1994).
    • Baniasadi, F., Tehranchi, M. M., Fathi, M. B. et al. “Intra-molecular magnetic exchange interaction in the tripyridinium bis[tetrachloroferrate(iii)] chloride molecular magnet: a broken symmetry-DFT study” Chem. Chem. Phys. 17 19119 (2015).
    • Baniasadi, F., Tehranchi, M. M., Fathi, M. B. et al. “Room temperature photoinduced magnetism in [py.H]3[FeCl4]2Cl” Chem. Phys. 168 (15) 35-41 (2015).
    • Fathi, M. B., Kamalkhani, N. “The plausible superexchange pathway inside the magnetic molecule tripyridinium bis [tetrachloroferrate (III)] chloride via study of DOS and Mos” Russian Journal of Physical Chemistry A, (Accepted for publication).
    • Frisch, M. J., Trucks, G. W., Schlegel, H. B. et al., “Gaussian 03 (Revision A.1)” Gaussian: Pittsburgh, PA (2003).
    • Schubert, K., Gua, M., Atak, K. et al. “The electronic structure and deexcitation pathways of an isolated metalloporphyrin ion resolved by metal L-edge spectroscopy” (Edge Article) Sci., 12 (11) 3966-3976 (2021) (Advance Article).
    • O’boyle, N. M., Tenderholt, A. L. and Langner, K. M. “cclib: A library for package-independent computational chemistry algorithms” Comput. Chem. 29 (5) 839-845 (2008).
    • Valeur, B. Molecular Fluorescence: Principles and Applications Digital Encyclopedia of Applied Physics- Wiley Online Library-VCH (2003).
    • Atkins, P. W. and de Paula, J. Physical Chemistry 9th, W H Freeman and Company (2010).
    • Atkins, P. W. and Friedman, R. Molecular quantum mechanics Oxford University Press (2005).
    • Klessinger, M., Michl, J. Excited States and Photochemistry of Organic Molecules 1st, VCH, New York, (1995).
    • Haug, H. and Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors World Scientific Publishing (2000).
    • Klán, P. and Wirzr, J. Photochemistry of Organic Compounds: From Concepts to Practice Wiley (2009).
    • Wang, X., Li, L., Gong, K. et al., “Modelling air quality during the EXPLORE-YRD campaign – Part I. Model performance evaluation and impacts of meteorological inputs and grid resolutions” Atmospheric environment, 246 (1) 118131 (2021).
    • Dong, Y., Peng, W., Liu, Y. et al. “Photochemical origin of reactive radicals and halogenated organic substances in natural waters: A review” Journal of Hazardous Materials, 401 (5) 123884 (2021).
    • Atkins, P. W. and Friedman, R. Molecular quantum mechanics Oxford University Press, Oxford, New York (2005).
    • Baniasadi, F., Sahraei, N., Fathi, M. B. et al. “X-ray characterization of tripyridinium bis[tetrabromidoferrate(III)] bromide asymmetric unit in solution by Debye function analysis” International Journal of Modern Physics B30(24):1650174 (2016).
    • Grekhov, A. M., Gun’ko, V. M., Klapchenko, G. M. et al. “Calculations of electronic structure and density of states of ideal and disordered silicon clusters” Exp. Chem. 20 (4) 447-451 (1984).