References
[1] Nguyen-Thanh, N., Li, W. and Zhou, K. “Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach”, Comput. Mech., 62, pp. 1287-1309 (2018).
[2] Tan, P., Nguyen-Thanh, N., Rabczuk, T., et al. “Static, dynamic and buckling analyses of 3D FGM plates and shells via an isogeometric-meshfree coupling approach”, Compos. Struct., 15, pp. 35-50 (2018).
[3] Li, Y., Xiong, F., Xie, L., et al. “State-space approach for transverse vibration of double-beam systems”, Int. J. Mech. Sci., 189, pp. 105974 (2021).
[4] Abrate, S. “Functionally graded plates behave like homogeneous plates”, Compos. Part B-Eng., 39, pp. 151-158 (2008).
[5] Yin, S., Yu, T. and Liu, P. “Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface”, Adv. Mech. Eng., 5, 634584 (2013).
[6] Huang, J., Nguyen-Thanh, N. and Zhou, K. “Extended isogeometric analysis based on Bézier extraction for the buckling analysis of Mindlin–Reissner plates”, Acta Mech., 228, pp. 3077-3093 (2017).
[7] Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H., et al. “Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory”, Appl. Math. Model., 34, pp. 1276-1291 (2010).
[8] Thai, H.T. and Choi, D.H. “A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates”, Compos. Struct., 101, pp. 332-340 (2013).
[9] Thai, H.T., Nguyen, T.K., Vo, T.P., et al. “Analysis of functionally graded sandwich plates using a new first-order shear deformation theory”, Eur. J. Mech. A-Solids, 45, pp. 211-225 (2014).
[10] Anamagh, M.R. and Bediz, B. “Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene platelets using spectral Chebyshev approach”, Compos. Struct., pp.112765 (2020).
[11] Matsunaga, H. “Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory”, Compos. Struct., 82, pp. 499-512 (2008).
[12] Baferani, A.H., Saidi, A.R. and Ehteshami, H. “Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation”, Compos. Struct., 93, pp. 1842-1853 (2011).
[13] Ebrahimi, F. and Heidari, E. “Surface effects on nonlinear vibration of embedded functionally graded nanoplates via higher order shear deformation plate theory”, Mech. Adv. Mater. Struc., 26, pp. 671-699 (2019).
[14] Belkhodja, Y., Ouinas, D., Zaoui, F.Z., et al. “An exponential-trigonometric higher order shear deformation theory (HSDT) for bending, free vibration, and buckling analysis of functionally graded materials (FGMs) plates”, Adv. Compos. Lett., 29, pp. 0963693519875739 (2020).
[15] Shimpi, R.P. “Refined plate theory and its variants”, AIAA J., 40, pp. 137-146 (2002).
[16] Benachour, A., Tahar, H.D., Atmane, H.A., et al. “A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient”, Compos. Part B-Eng., 42, pp. 1386-1394 (2011).
[17] Thai, H.T. and Choi, D.H. “A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation”, Compos. Part B-Eng., 43, pp. 2335-2347 (2012).
[18] Hadji, L., Atmane, H.A., Tounsi, A., et al. “Free vibration of functionally graded sandwich plates using four-variable refined plate theory”, Appl. Math. Mech., 32, pp. 925-942 (2011).
[19] Mechab, I., Mechab, B. and Benaissa, S. “Static and dynamic analysis of functionally graded plates using four-variable refined plate theory by the new function”, Compos. Part B-Eng., 45 pp. 748-757 (2013).
[20] Demirhan, P.A. and Taskin, V. “Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach”, Compos. Part B-Eng., 160, pp. 661-676 (2019).
[21] Tan, P., Nguyen-Thanh, N. and Zhou, K. “Extended isogeometric analysis based on Bézier extraction for an FGM plate by using the two-variable refined plate theory”, Theor. Appl. Fract. Mech., 89, pp.127-38 (2017).
[22] Le, C.I., Pham, V.N. and Nguyen, D.K. “Free Vibration of FGSW Plates Partially Supported by Pasternak Foundation Based on Refined Shear Deformation Theories”,
Math. Probl. Eng., (2020)
https://doi.org/10.1155/2020/7180453.
[23] Abrate, S. and Di Sciuva, M. “Equivalent single layer theories for composite and sandwich structures: A review”, Compos. Struct., 179, pp. 482-494 (2017).
[24] Iurlaro, L., Gherlone, M. and Di Sciuva, M. “Bending and free vibration analysis of functionally graded sandwich plates using the refined zigzag theory”, J. Sandw. Struct. Mater., 16, pp. 669-699 (2014).
[25] Ghorbanpour Arani, A., Mosayyebi, M., Kolahdouzan, F., et al. “Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers”, Proceedings of the Institution of Mechanical Engineers, Part G: J. Aerosp. Eng., 231, pp. 2464-2478 (2017).
[26] Abrate, S. and Di Sciuva, M. “Multilayer Models for Composite and Sandwich Structures,” Comprehensive Composite Materials II, P.W.R. Beaumont, and C.H. Zweben, eds., Elsevier, pp. 399–425 (2018).
[27] Di Sciuva, M. and Sorrenti, M. “Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the Refined Zigzag Theory”, J. Sandw. Struct. Mater., pp. 1–43 (2019).
[28] Di Sciuva, M. and Sorrenti, M. “Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory”, Compos. Struct., 227, pp. 111324 (2019).
[29] Dorduncu, M. “Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory”, Thin-Walled Struct., 146, pp. 106468 (2020).
[30] He, X.Q., Ng, T.Y., Sivashanker, S., et al. “Active control of FGM plates with integrated piezoelectric sensors and actuators”, Int. J. Solids Struct., 38, pp. 1641-1655 (2001).
[31] Farsangi, M.A. and Saidi, A.R. “Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers”, Smart Mater. Struct., 21, 094017 (2012).
[32] Farsangi, M.A., Saidi, A.R. and Batra, R.C. “Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates”, J. Sound Vib., 332, pp. 5981-5998 (2013).
[33] Alibeigloo, A. “Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity”, Eur. J. Mech. A-Solids., 44, pp. 104-115 (2014).
[34] Bruant, I. and Proslier, L. “Improved active control of a functionally graded material beam with piezoelectric patches”, J. vib. Control., 21, pp. 2059-80 (2015).
[35] Rouzegar, J. and Abad, F. “Free vibration analysis of FG plate with piezoelectric layers using four-variable refined plate theory”, Thin-Walled Struct., 89, pp. 76-83 (2015).
[36] Abad, F. and Rouzegar, J. “An exact spectral element method for free vibration analysis of FG plate integrated with piezoelectric layers”, Compos. Struct., 180, pp. 696-708 (2017).
[37] El Harti, K., Rahmoune, M., Sanbi, M., et al. “Finite element model of vibration control for an exponential functionally graded timoshenko beam with distributed piezoelectric sensor/actuator”, Actuators., 8, pp. 19 (2019).
[38] Zhang, S.Q., Gao, Y.S., Zhao, G.Z., et al. “Geometrically nonlinear analysis of CNT-reinforced functionally graded composite plates integrated with piezoelectric layers”, Compos. Struct., 234, pp.111694 (2020).
[39] Shahdadi, A. and Rahnama, H. “Free vibration of a functionally graded annular sector plate integrated with piezoelectric layers”, Appl. Math. Model., 79, pp.341-361 (2020).
[40] Rouzegar, J. and Davoudi, M. “Forced vibration of smart laminated viscoelastic plates by RPT finite element approach”, Acta Mech. Sinica, 36, pp. 933–949 (2020).
[41] Aghakhani, A., Motlagh, P.L., Bediz, B., et al. “A general electromechanical model for plates with integrated piezo-patches using spectral-Tchebychev method”, J. Sound. Vib., 458, pp. 74-88 (2019).
[42] Motlagh, PL., Anamagh, M.R., Bediz, B., et al. “Electromechanical analysis of functionally graded panels with surface-integrated piezo-patches for optimal energy harvesting”, Compos. Struct., 263, pp. 113714 (2021).
[43] Chen, W.Q. and Ding, H.J. “On free vibration of a functionally graded piezoelectric rectangular plate”, Acta Mech., 153, pp. 207-216 (2002).
[44] Kapuria, S. and Achary, G.G.S. “Exact 3D piezoelasticity solution of hybrid cross–ply plates with damping under harmonic electro-mechanical loads”, J. Sound Vib., 282, pp. 617-634 (2005).
[45] Bian, Z.G., Ying, J., Chen, W.Q., et al. “Bending and free vibration analysis of a smart functionally graded plate”, Struct. Eng. Mech., 23, pp. 97-113 (2006).
[46] Yas, M.H., Jodaei, A., Irandoust, S., et al. “Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations”, Meccanica, 47, pp. 1401-1423 (2012).
[47] Jodaei, A., Jalal, M. and Yas, M.H. “Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates via SSDQM and comparative modeling by ANN”, Math. Comput. Modell., 57, pp. 1408-1425 (2013).
[48] Yas, M.H. and Moloudi, N. “Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method”, Appl. Math. Mech., 36, pp. 439-464 (2015).
[49] Xin, L. and Hu, Z. “Free vibration of simply supported and multilayered magneto-electro-elastic plates”, Compos. Struct., 121, pp. 344-350 (2015).
[50] Feri, M., Alibeigloo, A. and Zanoosi, A.P. “Three dimensional static and free vibration analysis of cross-ply laminated plate bonded with piezoelectric layers using differential quadrature method”, Meccanica, 51, pp. 921-937 (2016).
[51] Ezzin, H., Amor, M.B. and Ghozlen, M.H. “Lamb waves propagation in layered piezoelectric/piezomagnetic plates”, Ultrasonics, 76, pp. 63-69 (2017).
[52] Safarpour, M., Rahimi, A.R. and Alibeigloo, A. “Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM”, Mech. Based Des. Struct. Mach., 48, pp. 496-524 (2020).
[53] Thai, H.T. and Kim, S.E. “Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates”, Int. J. Mech. Sci., 54, pp. 269-276 (2012).
[54] Tiersten, H.F. “Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates”, Springer (2013).
[55] Wang, Q., Quek, S.T., Sun, C.T., et al. “Analysis of piezoelectric coupled circular plate”, Smart Mater. Struct., 10, 229 (2001).
[56] Franklin, J.N. “Matrix theory”, Courier Corporation (2012).
[57] Jin, G., Su, Z., Shi, S., et al. “Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions’, Compos. Struct., 108, pp. 565-577 (2014).
[58] Zaoui, F.Z., Ouinas, D. and Tounsi, A. “New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations”, Compos. Part B-Eng., 159, pp. 231-247 (2019).
[59] Abad, F. and Rouzegar, J. “Exact wave propagation analysis of moderately thick Levy-type plate with piezoelectric layers using spectral element method”, Thin-Walled Struct., 141, pp. 319-331 (2019).