Novel design of natural double-pass solar air heater for higher thermal performance using vortex generator

Document Type : Article


1 Department of Mechanical Engineering, School of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

2 Centre for Mechanical Technology and Automation, Universidade de Aveiro, 3810-193, Aveiro, Portugal


In this paper, the effects of flapping flexible vortex generators in a two dimensional turbulent free convection airflow in a double-pass solar air heater are discussed. Two thin elastic winglets, used here as vortex generators, are attached on two absorber walls near the inlet section with the attack angle of 65o. This novel concept is demonstrated using transient numerical simulation of the flow field by the finite element method with considering the Fluid-Solid Interaction. In this work, an extensive comparison is made between four different configurations. The absorber and outlet temperatures, as well as flow rate and velocity field, are discussed in detail and the numerical findings reveal considerable thermal performance enhancement in comparison with conventional parallel double pass heater. The improvement up to 54% in the ∆T ̅=T ̅_out-T_in , from 13 to 20 o C, while reducing 33.6% flow rate. The present numerical results are validated against the experimental and numerical data reported in the literature.


[1] BP group, BP Energy Outlook 2030 (2013).
 [2] Gill, R. S. , Singh, S. and  Singh, P. P. "Low cost solar air heater", Energy Convers. Manag. 57 , pp. 131–142 (2012).
[3]     Tuncer, A. D,. Khanlari, A., Sözen,  A. et al. " Energy-exergy and enviro-economic survey of solar air heaters with various air channel modifications", Renew. Energy, 160, pp. 67–85 (2020).
 [4]      Singh, A. P. and  Singh,  O. P. "Thermo-hydraulic performance enhancement of convex-concave natural convection solar air heaters", Sol. Energy, 183 , pp. 146–161 (2019).
 [5]      Rayeni, A. D. and  Gandjalikhan Nassab, S. A. "Effects of gas radiation on thermal performances of Ssngle and double flow plane solar heaters", Int. J. Eng., 33, pp. 1156–1166 (2020).
[6]       Foruzan Nia, M.  Gandjalikhan Nassab, S. A. and  Ansari, A. B. "Numerical simulation of flow and thermal behavior of radiating gas flow in plane solar heaters", J. Therm. Sci. Eng. Appl.,12, pp.  031008-1 (2020).
 [7]      Vijayan, S., Arjunan, T. V., Kumar, A. et al. "Experimental and thermal performance investigations on sensible storage based solar air heater", J. Energy Storage. , 31, pp. 101620  (2020).
[8]       Ghritlahre, H. K. and  Verma, M. "Accurate prediction of exergetic efficiency of solar air heaters using various predicting methods", J. Clean. Prod., 288, pp. 125115 (2020).
[9]       Yadav, S. and  Saini, R. P. "Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate," Sol. Energy, 208 , pp.236–248 (2020).
[10]     Korpale, V. S.,  Deshmukh, S. P., Mathpati, C. S. et al." Numerical simulations and optimization of solar air heaters", Appl. Therm. Eng., 180, pp. 115744 (2020).
[11]     Sheikhnejad, Y. and  Gandjalikhan Nassab, S. A. " Enhancement of solar chimney performance by passive vortex generator", Renew. Energy, 169, pp.437-450 (2021).
 [12]    Shi, J.  Hu, J. Schafer, S. R. et al." Numerical study of heat transfer enhancement of channel via vortex-induced vibration", Appl. Therm. Eng., 70 , pp. 838–845 (2014).
[13]     Fiebig, M. "Vortices, generators and heat transfer", Chem. Eng. Res. Des., 76, pp. 108–123 (1998).
[14]     Li, Z.,  Xu, X., Li, K. et al."A flapping vortex generator for heat transfer enhancement in a rectangular airside fin", Int. J. Heat Mass Transf., 118 , pp. 1340–1356 (2018).
[15]     Ali, S., Menanteau, S., Habchi, C. et al. " Heat transfer and mixing enhancement by using multiple freely oscillating flexible vortex generators", Appl. Therm. Eng., 105,  pp. 276–289 (2016).
[16]     Soti, A. K. Bhardwaj, R. and  Sheridan, J."Flow-induced deformation of a flexible thin structure as manifestation of heat transfer enhancement", Int. J. Heat Mass Transf., 84, pp. 1070–1081 (2015).
[17]     Park, S. G., Kim, B., Chang, C. B. et al." Enhancement of heat transfer by a self-oscillating inverted flag in a Poiseuille channel flow", Int. J. Heat Mass Transf. , 96, pp.  362–370 (2016).
[18]     Favier, J.  Revell, A. and  Pinelli, A. "Numerical study of flapping filaments in a uniform fluid flow", J. Fluids Struct. , 53 , pp. 26–35 (2015).
 [19]    Varol, Y. and  Oztop, H. F."A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors", Build. Environ. , 43, pp. 1535–1544 (2008).
[20]     Varol, Y., Koca, A., Oztop, H. F. et al." Forecasting of thermal energy storage performance of Phase Change Material in a solar collector using soft computing techniques", Expert Syst. Appl. , 37 , pp. 2724–2732 (2010).
[21]     Bayrak, F. Oztop, H. F. and  Hepbasli, A."Energy and exergy analyses of porous baffles inserted solar air heaters for building applications", Energy Build. , 57, pp. 338–345 (2013).
[22]     Oztop, H. F., Bayrak, F. and Hepbasli, A."Energetic and exergetic aspects of solar air heating (solar collector) systems", Renew. Sustain. Energy Rev. , 21, pp. 59–83 (2013).
[23]     Singh, A. P., Kumar, A. A. and  Singh, O. P."Designs for high flow natural convection solar air heaters", Sol. Energy., 193, pp. 724–737 (2019).
 [24]    Tallec,P. L. and Mouro, J."Fluid structure interaction with large structural displacements", Comput. Methods Appl. Mech. Eng. , 190, pp.3039–3067 (2001).
[25]     Comsol_Multiphysics, ALE Fluid- Structure Interaction , pp. 1–16 (2011).
[26]     Zienkiewicz O. C., Taylor, R. and Nithiarasu, P. "The finite element for fluid dynamic", 7th edition, pp. 50-88, Butterworth-Heinemann Press, Oxford, Uk (2006).
[27]     Cheng, X., and  Müller, U."Turbulent natural convection coupled with thermal radiation in large vertical channels with asymmetric heating", Int. J. Heat Mass Transf. , 41, pp. 1681–1692 (1998).