Effectiveness of a vertical micropile system in mitigating the liquefaction-induced lateral spreading effects on pile foundations: 1 g large-scale shake table tests

Document Type : Article


1 School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 Department of Civil Engineering, Sharif University of Technology, Tehran, Iran


Liquefaction-induced lateral spreading has caused severe damages to pile foundations during past earthquakes. Micropiles can be used as a mitigation strategy against lateral spreading effects on pile foundations. However, the available knowledge regarding the possible efficiency of such a strategy is quite limited. In this paper, the effectiveness of a vertical micropile system as a lateral spreading countermeasure was evaluated using large scale 1g shake table tests on 3×3 pile groups. The results showed that the micropile system was not able to effectively reduce bending moments in piles while it reduced lateral soil pressures exerted on the upslope piles of the group by the upper non-liquefiable layer. The employed micropiles restricted lateral displacement of the upper non-liquefiable layer and partially that of the liquefiable layer, especially at upper depths. Solutions such as increasing the number of micropiles with a tighter pattern, using stiffer micropiles or fixing them in the underlying non-liquefiable layer can enhance their performance.


1. Hamada, M., Yasuda, S., Isoyama, R., et al. “Study on liquefaction induced permanent ground displacements”, Report for the Association for the development of Earthquake Prediction (1986).
2.    Bardet, J.P. and Kapuskar, M. “Liquefaction sand boils in San Francisco during 1989 Loma Prieta earthquake”, J. Geotech. Eng., 119(3), pp. 543-562 (1993).
3.    Hamada, M., Isoyama, R. and Wakamatsu, K. “Liquefaction-induced ground displacement and its related damage to lifeline facilities”, Soils & Found., 36 (special issue), pp. 81-97 (1996).
4.    Tokimatsu, K., Mizuno, H. and Kakurai, M. “Building damage associated with geotechnical problems”, Soils & Found., 36 (special issue), pp. 219-234 (1996).
5.    Tokimatsu, K. and Asaka, Y. “Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake”, Soils & Found., 38 (special issue), pp. 163-177 (1998).
6.    Tokimatsu, K., Tamura, S., Suzuki, H., et al. “Building damage associated with geotechnical problems in the 2011 Tohoku Pacific Earthquake”, Soils & Found., 52(5), pp. 956-974 (2012).
7.    Eberhard, M.O., Baldridge, S., Marshall, J., et al. “Mw 7.0 Haiti earthquake of January 12, 2010”, USGS/EERI advance reconnaissance team report (2013).
8.    Kramer, S. and Elgamal, A. “Modeling soil liquefaction hazards for performance based earthquake engineering”, Report 2001/13, Pacific Earthquake Engineering Research Center, University of California, Berkeley (2001).
9.    Hamada, M. “Performances of foundations against liquefaction-induced permanent ground displacements”, 12th World Conference on Earthquake Engineering, Tokyo, Japan, pp. 1754-1761 (2000).
10.     Cubrinovski, M., Kokusho, T. and Ishihara, K. “Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils”, Soil Dyn. Earthq. Eng., 26(2-4), pp. 275-286 (2006).
11.     Dungca, J.R., Kuwano, J.I., Takahashi, A., et al. “Shaking table tests on the lateral response of a pile buried in liquefied sand”, Soil Dyn. Earthq. Eng., 26(2-4), pp. 287-295 (2006).
12.     He, L., Elgamal, A., Abdoun, T., et al. “Liquefaction-induced lateral load on pile in a medium Dr sand layer”, J. Earthq. Eng., 13(7), pp. 916-938 (2009).
13.     Motamed, R., Sesov, V., Towhata, I., et al. “Experimental modeling of large pile groups in sloping ground subjected to liquefaction-induced lateral flow: 1-G shaking table tests”, Soils & Found., 50(2), pp. 261-279 (2010).
14.     Haeri, S.M., Kavand, A., Rahmani, I., et al. “Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing”, Soil Dyn. Earthq. Eng., 38, pp. 25-45 (2012).
15.     Motamed, R., Towhata, I., Honda, T., et al. “Pile group response to liquefaction-induced lateral spreading: E-Defense large shake table test”, Soil Dyn. Earthq. Eng., 51, pp. 35-46 (2013).
16.     Kavand, A., Haeri, S.M., Asefzadeh, A., et al. “Study of the behavior of pile groups during lateral spreading in medium dense sands by large scale shake table test”, Int. J. Civ. Eng., 12(3-B), pp. 186-203 (2014).
17.     Abdoun, T. and Dobry, R. “Evaluation of pile foundation response to lateral spreading”, Soil Dyn. Earthq. Eng., 22(9-12), pp. 1051-1058 (2002).
18.     Haigh, S.K. and Madabhushi, S.P. “Centrifuge modelling of lateral spreading past pile foundations”, International Conference on Physical Modelling in Geotechnics, St. John's, Newfoundland, Canada (2002).
19.     Abdoun, T., Dobry, R., O’Rourke, T.D., et al. “Pile response to lateral spreads: centrifuge modeling”, J. Geotech. Geoenviron.,129(10), pp. 869-878 (2003).
20.     Imamura, S., Hagiwara, T., Tsukamoto, Y., et al. “Response of pile groups against seismically induced lateral flow in centrifuge model tests”, Soils & Found., 44(3), pp. 39-55 (2004).
21.     Brandenberg, S.J., Boulanger, R.W., Kutter, B.L., et al. “Behavior of pile foundations in laterally spreading ground during centrifuge tests”, J. Geotech. Geoenviron., 131(11), pp. 1378-1391 (2005).
22.     Gonzalez, L., Abdoun, T. and Dobry, R. “Effect of soil permeability on centrifuge modeling of pile response to lateral spreading”, J. Geotech. Geoenviron., 135(1), pp. 62-73 (2009).
23.     Ashford, S.A., Juirnarongrit, T., Sugano, T., et al. “Soil–pile response to blast-induced lateral spreading. I: field test”, J. Geotech. Geoenviron., 132(2), pp. 152-162 (2006). 
24.     Balakrishnan, A. and Kutter, B.L. “Settlement, sliding, and liquefaction remediation of layered soil”, J. Geotech. Geoenviron., 125(11), pp. 968-978 (1999).
25.     Abdoun, T., Dobry, R., Zimmie, T.F., et al. “Centrifuge research of countermeasures to protect pile foundations against liquefaction-induced lateral spreading”, J. Earthq. Eng., 9, pp. 105-125 (2005).
26.     Pamuk, A., Gallagher, P.M. and Zimmie, T.F. “Remediation of piled foundations against lateral spreading by passive site stabilization technique”, Soil Dyn. Earthq. Eng., 27(9), pp. 864-874 (2007).
27.     O’Donnell, S.T., Rittmann, B.E. and Kavazanjian Jr, E. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation”, J. Geotech. Geoenviron., 143(12), p.04017094 (2017).
28.     O’Donnell, S.T., Kavazanjian Jr, E. and Rittmann, B.E., “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP”, J. Geotech. Geoenviron., 143(12), p.04017095 (2017).
29.     Olarte, J.C., Dashti, S., Liel, A.B., et al. “Effects of drainage control on densification as a liquefaction mitigation technique”, Soil Dyn. Earthq. Eng., 110, pp.212-231 (2018).
30.     Huang, Y., Wen, Z., Wang, L., et al. “Centrifuge testing of liquefaction mitigation effectiveness on sand foundations treated with nanoparticles”, Eng. Geol., 249, pp.249-256 (2019).
31.     Shen, M., Juang, C.H. and Chen, Q. “Mitigation of liquefaction hazard by dynamic compaction—a random field perspective”, Can. Geotech.  J., 56(12), pp.1803-1815 (2019).
32.     Salvatore, E., Modoni, G., Mascolo, M.C., et al. “Experimental Evidence of the Effectiveness and Applicability of Colloidal Nanosilica Grouting for Liquefaction Mitigation”, J. Geotech. Geoenviron., 146(10), p.04020108 (2020).
33.     Mousavi, S. and Ghayoomi, M. “Liquefaction mitigation of sands with nonplastic fines via microbial-induced partial saturation”, J. Geotech. Geoenviron., 147(2), p.04020156 (2021).
34.     Arango, I. “Mitigation of lateral ground displacements of liquefied soils with underground barriers”, Soil Dyn. Earthq. Eng., 22(9-12), pp. 1067-1073 (2002).
35.     Yasuda, S. and Ogasawara, M. “Studies on several countermeasures against liquefaction-induced flow and an application of a measure to existing bridges in Tokyo”, J. Jpn. Association. Earthq. Eng., 4(3), pp. 370-376 (2004).
36.     Motamed, R. and Towhata, I. “Mitigation measures for pile groups behind quay walls subjected to lateral flow of liquefied soil: Shake table model tests”, Soil Dyn. Earthq. Eng., 30(10), pp. 1043-1060 (2010).
37.     Kavand, A., Haeri, S.M., Raisianzadeh, J., et al. “Performance evaluation of stone columns as mitigation measure against lateral spreading in pile groups using shake table tests”, International conference on ground improvement and ground control, Wollongong, Australia (2012). 
38.     Salem, Z.B., Frikha, W. and Bouassida, M. “Effects of densification and stiffening on liquefaction risk of reinforced soil by stone column”, J. Geotech. Geoenviron., 143(10), p.06017014 (2017).
39.     Badanagki, M., Dashti, S. and Kirkwood, P. “Influence of dense granular columns on the performance of level and gently sloping liquefiable sites”, J. Geotech. Geoenviron., 144(9), p.04018065 (2018).
40.     Bahmanpour, A., Towhata, I., Sakr, M., et al. “The effect of underground columns on the mitigation of liquefaction in shaking table model experiments”, Soil Dyn. Earthq. Eng., 116, pp.15-30 (2019).
41.     García-Torres, S. and Madabhushi, G.S.P. “Performance of vertical drains in liquefaction mitigation under structures”, B. Earthq. Eng., 17(11), pp.5849-5866 (2019).
42.     FHWA NHI (Federal Highway Administration-National Highway Institute), “Micro-pile design and construction– reference manual”, US Department of Transportation, McLean, Va. Publication No. FHWA NHI-05-039 (2005).
43.     Komak Panah, A., Jalilian Mashhoud, H., Yin, J.H., et al. “Shaking Table Investigation of Effects of Inclination Angle on Seismic Performance of Micropiles”, Int. J. Geomech., 18(11), p.04018142 (2018).
44.     Mashhoud, H.J., Yin, J.H., Panah, A.K., et al. “Shaking table test study on dynamic behavior of micropiles in loose sand”, Soil Dyn. Earthq. Eng., 110, pp.53-69 (2018).
45.     Mashhoud, H.J., Yin, J.H., Panah, A.K., et al. “A 1-g shaking table investigation on response of a micropile system to earthquake excitation”, Acta Geotech., 15(4), pp.827-846 (2020).
46.     Capatti, M.C., Dezi, F., Carbonari, S., et al. “Full-scale experimental assessment of the dynamic horizontal behavior of micropiles in alluvial silty soils”, Soil Dyn. Earthq. Eng., 113, pp.58-74 (2018).
47.     El Sharnouby, M.M. and El Naggar, M.H. “Field investigation of lateral monotonic and cyclic performance of reinforced helical pulldown micropiles”, Can. Geotech. J., 55(10), pp.1405-1420 (2018).
48.     Guo, Z., Khidri, M. and Deng, L. “Field loading tests of screw micropiles under axial cyclic and monotonic loads”, Acta Geotech., 14(6), pp.1843-1856 (2019).
49.     Capatti, M.C., Dezi, F., Carbonari, S., et al. “Dynamic performance of a full-scale micropile group: Relevance of nonlinear behaviour of the soil adjacent to micropiles”, Soil Dyn. Earthq. Eng., 128, p.105858 (2020).
50.     McManus, K.J., Charton, G. and Turner, J.P. “Effect of micropiles on seismic shear strain”, GeoSupport 2004: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, Orlando, Florida, United States, pp. 134-145 (2004). 
51.     Shahrour, I. and Juran, I. “Seismic behaviour of micropile systems”, Ground Improv., 8, pp. 109-120 (2004).
52.     Mitrani, H. and Madabhushi, S.P. “Centrifuge modelling of inclined micro-piles for liquefaction remediation of existing buildings”, Geomech. Geoeng.: An Int. J., 3(4), pp. 245-256 (2008). 
53.     GuhaRay, A., Mohammed, Y., Harisankar, S., et al. “Effect of micropiles on liquefaction of cohesionless soil using shake table tests”, Innov. Infr. Solut., 2(1), p.13 (2017).
54.     Farhangi, V., Karakouzian, M. and Geertsema, M. “Effect of micropiles on clean sand liquefaction risk based on CPT and SPT”, Appl. Sci., 10(9), p.3111 (2020).
55.     Iai, S. “Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field”, Soils & Found., 29(1), pp. 105-118 (1989).
56.     Iai, S., Tobita, T. and Nakahara, T. “Generalised scaling relations for dynamic centrifuge tests”, Geotechnique, 55(5), pp. 355-362 (2005).
57.     Vargas-Monge, W. “Ring shear tests on large deformation of sand”, Ph. D. Thesis, The University of Tokyo, (1998).
58.     JRA (Japan Road Association), “Seismic design specifications for highway bridges”, English version, Prepared by Public Works Research Institute (PWRI) and Ministry of Land, Infrastructure and Transport, Tokyo, Japan (2002).
59.    Haeri, S.M., Kavand, A., Asefzadeh, A., et al. “Large scale 1-g shake table model test on the response of a stiff pile group to liquefaction induced lateral spreading”, 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris,  pp. 919-922 (2013).
60.     Brandenberg, S.J., Wilson, D.W. and Rashid, M.M. “Weighted residual numerical differentiation algorithm applied to experimental bending moment data”, J. Geotech. Geoenviron., 136(6), pp. 854-863 (2010).