Optimization of FSW process parameters for maximum UTS of AA6061/rutile composites using Taguchi technique

Document Type : Article

Authors

1 - Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India. - Department of Mechatronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

2 Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India

Abstract

In the friction stir welding process, preferred joint property is vastly reliant on the selection of optimal welding conditions. The present study aims at the application of the Taguchi approach to finding out the optimal process conditions to get superior ultimate tensile strength in the friction stir welded aluminium matrix composite (AMC) joints. AMC reinforced with rutile particles which have a potential application in the aerospace, automotive, and marine industries are used in the present work. Taguchi parametric design technique was used to identify the influence of rotational speed, tool traverse speed, and tool geometry on joint strength. Taguchi approach confines the optimum level of process variables and optimization of these variables was performed based on this study. Investigation reveals that the parameters within the chosen range of values, critically affect the output. The predicted value of the output response is 155.48 MPa which was validated by conducting further trials with optimum process variables. ANOVA results indicated that the UTS of the composite joint is mainly affected by the tool traverse speed followed by rotational speed, and tool geometry. The microstructural study unveiled that grain size is dependent on process variables and finer grains offer better joint properties

Keywords


  1. References:

    1. Avettand-Fènoël, M. N. and Simar, A., “A review about Friction Stir Welding of metal matrix composites”, Charact., 120, pp. 1–17 (2016).
    2. Salih, O. S., Ou, H., Sun, W., and McCartney, D. G., “A review of friction stir welding of aluminium matrix composites”, Des., 86, pp. 61–71 (2015).
    3. Prabhu, S. R. B., Shettigar, A., Herbert, M., and Rao, S., “Study on Mechanical and microstructural characteristics of Friction Stir Welded Aluminium Matrix composite”, Today Proc., Elsevier Ltd, pp. 1183–1189 (2020).
    4. Storjohann, D., Barabash, O. M., Babu, S. S., David, S. A., Sklad, P. S., and Bloom, E. E., “Fusion and friction stir welding of aluminum-metal-matrix composites”, Mater. Trans. A Phys. Metall. Mater. Sci., 36(11), pp. 3237–3247 (2005).
    5. Prabhu B, S. R., Shettigar, A., Herbert, M. A., and Rao, S. S., “Experimental investigation of joint properties of friction stir welded aluminium matrix composite”, Today Proc. (2021).
    6. Meng, X., Huang, Y., Cao, J., Shen, J., and dos Santos, J. F., “Recent progress on control strategies for inherent issues in friction stir welding”, Mater. Sci., 115(December 2018), p. 100706 (2021).
    7. Mishra, R. S., Mahoney, M. W., Sato, Y., and Hovanski, Y., “Friction stir welding and processing VIII”, Stir Weld. Process. VIII, 50(1–2), pp. 1–300 (2016).
    8. Subramanya, P., Amar, M., Arun, S., Mervin, H., and Shrikantha, R., “Friction stir welding of Aluminium matrix composites - A Review”, MATEC Web Conf. 144, (2018).
    9. Delir Nazarlou, R., Nemati Akhgar, B., and Omidbakhsh, F., “Optimizations of friction stir welding parameters with Taguchi method for the maximum electrical conductivity in Al-1080 welded sections”, Iran., 28(4), pp. 2250-2258 (2021).
    10. Salih, O. S., Ou, H., Wei, X., and Sun, W., “Microstructure and mechanical properties of friction stir welded AA6092/SiC metal matrix composite”, Sci. Eng. A, 742(August 2018), pp. 78–88 (2019).
    11. Prabhu, S. R., Shettigar, A., Herbert, M., and Rao, S., “Multi Response Optimization of Friction Stir Welding Process Variables using TOPSIS approach”, IOP Conf. Ser. Mater. Sci. Eng., 376(1) (2018).
    12. Langari, J. and Kolahan, F., “The effect of friction stir welding parameters on the microstructure, defects, and mechanical properties of AA7075-T651 aluminium alloy joints”, Iran., 26(4 B), pp. 2418–2430 (2019).
    13. Prabhu, S., Shettigar, A. K., Rao, K., Rao, S., and Herbert, M., “Influence of Welding Process Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Aluminium Matrix Composite”, Sci. Forum, 880, pp. 50–53 (2016).
    14. Bhushan, R. K. and Sharma, D., “Optimization of FSW parameters for maximum UTS of AA6082/SiC/10P composites”, Compos. Lett., 28, pp. 1–7 (2019).
    15. Kasman, Ş., “Multi-response optimization using the Taguchi-based grey relational analysis : a case study for dissimilar friction stir butt welding of AA6082-T6 / AA5754-H111”, pp. 795–804 (2013).
    16. Lakshminarayanan, a K. and Balasubramanian, V., “Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique”, Nonferrous Met. Soc. China, 18(3), pp. 548–554 (2008).
    17. Shettigar, A. K., Prabhu, S., Malghan, R., Rao, S., and Herbert, M., “Application of Neural Network for the Prediction of Tensile Properties of Friction Stir Welded Composites”, Sci. Forum, 880, pp. 128–131 (2016).
    18. Gopalakrishnan, S. and Murugan, N., “Prediction of tensile strength of friction stir welded aluminium matrix TiCp particulate reinforced composite”, Des., 32(1), pp. 462–467 (2011).
    19. Ashok Kumar, B. and Murugan, N., “Optimization of friction stir welding process parameters to maximize tensile strength of stir cast AA6061-T6/AlNp composite”, Des., 57, pp. 383–393 (2014).
    20. Montgomery, D. C., Design and analysis of experiments, IV Edition, NY: John-Wiley & Sons, Inc, (2006).
    21. Ross, P. J., Taguchi techniques for quality engineering, NY: Tata McGraw Hill, (1988).
    22. Prabhu, S. R., Shettigar, A. K., Herbert, M. A., and Rao, S. S., “Microstructure and mechanical properties of rutile-reinforced AA6061 matrix composites produced via stir casting process”, Nonferrous Met. Soc. China (English Ed., 29(11) (2019).
    23. Prabhu, S. R. B., Shettigar, A. K., Herbert, M. A., and Rao, S. S., “Microstructure evolution and mechanical properties of friction stir welded AA6061/rutile composite”, Res. Express, 6(8) (2019).
    24. Factory Management and the Asian Productivity Organization, Industrial engineering and technology, Japan quality control circles, quality control case studies. Tokyo: Serasia Limited, (1982).
    25. Benyounis, K. Y. and Olabi, a. G., “Optimization of different welding processes using statistical and numerical approaches - A reference guide”, Eng. Softw., 39(6), pp. 483–496 (2008).
    26. Goyal, A., & Garg, R. K., “Modeling and optimization of friction stir welding parameters in joining 5086 H32 aluminium alloy’, Scientia iranica, 26(4), pp. 2407-2417. (2019).
    27. Moradi Faradonbeh, A., Shamanian, M., Edris, H., Paidar, M., and Bozkurt, Y., “Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior”, Mater. Eng. Perform., 27(2), pp. 835–846 (2018).
    28. Li, Y. Z., Wang, Q. Z., Xiao, B. L., and Ma, Z. Y., “Effect of welding parameters and B4C contents on the microstructure and mechanical properties of friction stir welded B4C/6061Al joints”, Mater. Process. Technol., 251(November 2016), pp. 305–316 (2018).
    29. Sreenivasan, K. S., Satish Kumar, S., and Katiravan, J., “Genetic algorithm based optimization of friction welding process parameters on AA7075-SiC composite”, Sci. Technol. an Int. J., 22(4), pp. 1136–1148 (2019).
    30. Heidarzadeh, A., Mironov, S., Kaibyshev, R., Çam, G., Simar, A., Gerlich, A., Khodabakhshi, F., Mostafaei, A., Field, D. P., Robson, J. D., Deschamps, A., and Withers, P. J., “Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution”, Mater. Sci., 117(September 2020), p. 100752 (2020).
    31. Prabhu, R. S. B., Shettigar, A. K., Patel GC, M., Herbert, M., and Rao, S. S., “Influence of process variables on joint attributes of friction stir welded aluminium matrix composite”, Mater. Process. Technol., pp. 1–10 (2020).
    32. Pandiyarajan, R., Maran, P., Murugan, N., Marimuthu, S., and Sornakumar, T., “Friction stir welding of hybrid AA 6061-ZrO2-C composites FSW process optimization using desirability approach”, Res. Express, 6(6) (2019).
Volume 29, Issue 2
Transactions on Mechanical Engineering (B)
March and April 2022
Pages 534-542
  • Receive Date: 18 August 2020
  • Revise Date: 21 May 2021
  • Accept Date: 13 September 2021