Prediction of work-rolls failure in hot ring rolling process

Document Type : Article


1 Faculty of Aerospace Engineering, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran

2 Department of Mechanical and Aerospace Engineering, Malek-Ashtar University of Technology, Shahinshahr, Esfahan, Iran


The work-rolls of the hot ring rolling process are subjected to various damages due to the contact with hot metal. Thermo-mechanical fatigue is one of these damages. In order to predict failure due to the thermo-mechanical stress in the work-rolls, the developed code in ABAQUS has been used. The comparison between three- and two-dimensional models and, also, thermal and thermo-mechanical response of work-rolls with variable boundary conditions has been investigated. The results have shown that by applying mechanical and thermal loads separately or simultaneously, the response of work-rolls is completely different. In the mandrel, the location of the maximum equivalent stress is on the surface, while the location of equivalent maximum stress is in the subsurface of the main-roll. By making use of cumulative damage rules and the stress life method, the thermo-mechanical fatigue life was estimated. The cumulated damage in the mandrel’s surface was higher than subsurface regions. In contrast to the mandrel, the cumulated damage in the main-roll’s subsurface was higher than surface regions. In hot ring rolling machines, these locations are prone to crack initiation as a result of the thermo-mechanical fatigue in the work-rolls.


  1. Reference

    1. Wang, M., Sheng, J., Wang, L.-D., Yang, Z.-Y., Shi, Z.-D., Wang, X.-J., and Fei, W.-D., “Hot rolling behavior of graphene/Cu composites”, J. Alloys Compd., 816, p. 153204 (2020).
    2. Gu, B., Chekhonin, P., Schaarschuch, R., Oertel, C.-G., Xin, S. W., Ma, C. L., Zhou, L., Gan, W. M., and Skrotzki, W., “Microstructure, texture and hardness of a metastable β-titanium alloy after bar-rolling and annealing”, J. Alloys Compd., 825, p. 154082 (2020).
    3. Deng, G. Y., Tieu, A. K., Su, L. H., Zhu, H. T., Reid, M., Zhu, Q., and Kong, C., “Microstructural study and residual stress measurement of a hot rolling work-roll material during isothermal oxidation”, Int. J. Adv. Manuf. Technol., 102(5–8), pp. 2107–2118 (2019).
    4. Masoudi Nejad, R., Shariati, M., Farhangdoost, K., and Atrian, A., “Rolling contact fatigue analysis of rails under the influence of residual stresses induced by manufacturing”, Sci. Iran., 26(3), pp. 1427–1437 (2019).
    5. Qaban, A., Mohmed, T., Quazi, M. M., and Naher, S., “The effect of Al and Nb contents, cooling rate and rolling condition on the microstructure and corrosion behaviour of HSLA steel”, Mater. Today Commun., 25, p. 101362 (2020).
    6. Hu, Z., Wei, Z., Sun, H., Yang, J., and Wei, L., “Optimization of metal rolling control using soft computing approaches: a review”, Arch. Comput. Methods Eng., pp. 1–17 (2019).
    7. Goryany, V., Schubrikoff, E., and Myronova, O., “Roll optimization via numerical modeling of stress distribution”, Mater. Test., 62(1), pp. 35–39 (2020).
    8. Song, J. L., Dowson, A. L., Jacobs, M. H., Brooks, J., and Beden, I., “Coupled thermo-mechanical finite-element modelling of hot ring rolling process”, J. Mater. Process. Technol., 121(2–3), pp. 332–340 (2002).
    9. Shahani, A. R., Nodamaie, S. A., and Salehinia, I., “Parametric study of hot rolling process by the finite element method”, Sci. Iran., 16(2 B), pp. 130–139 (2009).
    10. Harrer, W., Morrell, R., Lengauer, M., Danzer, R., Berroth, K., and Zleppnig, W., “Failure analysis of silicon nitride rings for hot rolling of highly alloyed steel and superalloy wires”, Eng. Fail. Anal., 18(1), pp. 138–147 (2011).
    11. Sonboli, A. and Serajzadeh, S., “A model for evaluating thermo-mechanical stresses within work-rolls in hot-strip rolling”, J. Eng. Math., 72(1), pp. 73–85 (2012).
    12. Sayadi, H. and Serajzadeh, S., “Prediction of thermal responses in continuous hot strip rolling processes”, Prod. Eng., 9(1), pp. 79–86 (2014).
    13. Yadav, V., Dixit, U. S., and Singh, A. K., “An approximate method for computing the temperature distributions in roll and strip during rolling process”, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 228(9), pp. 1118–1130 (2014).
    14. Benasciutti, D., De Bona, F., and Munteanu, M. G., “A harmonic one-dimensional element for non-linear thermo-mechanical analysis of axisymmetric structures under asymmetric loads: The case of hot strip rolling”, J. Strain Anal. Eng. Des., 51(7), pp. 518–531 (2016).
    15. Koohbor, B., “Finite element modeling of thermal and mechanical stresses in work-rolls of warm strip rolling process”, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 230(6), pp. 1076–1086 (2016).
    16. Deng, G. Y., Zhu, Q., Tieu, K., Zhu, H. T., Reid, M., Saleh, A. A., Su, L. H., Ta, T. D., Zhang, J., and Lu, C., “Evolution of microstructure, temperature and stress in a high speed steel work-roll during hot rolling: Experiment and modelling”, J. Mater. Process. Technol., 240, pp. 200–208 (2017).
    17. Weidlich, F., Braga, A. P. V., da Silva, L. G. D. B., Júnior, M. B., and Souza, R. M., “The influence of rolling mill process parameters on roll thermal fatigue”, Int. J. Adv. Manuf. Technol., 102(5–8), pp. 2159–2171 (2019).
    18. Hanoglu, U. and Šarler, B., “Hot rolling simulation system for steel based on advanced meshless solution”, Metals (Basel)., 9(7), p. 788 (2019).
    19. Palit, P., Patel, S. N., Mathur, J., and Shenoy, S., “Analysis of a Progressive Failure of a Work-roll in Hot Strip Mill”, J. Fail. Anal. Prev., 19(5), pp. 1297–1303 (2019).
    20. Hadizadeh, B., Bahrami, A., Eslami, A., Abdian, K., Araghi, M. Y., and Etezazi, M., “Establishing the cause of failure in continuous casting rolls”, Eng. Fail. Anal., 108, p. 104346 (2020).
    21. Tolcha, M. A., Altenbach, H., and Tibba, G. S., “Modeling creep-fatigue interaction damage and H13 tool steel material response for rolling die under hot milling”, Eng. Fract. Mech., 223, p. 106770 (2020).
    22. Balla, M., “Formulation of coupled problems of thermoelasticity by finite elements”, Period. Polytech. Mech. Eng., 33(1–2), pp. 59–70 (1989).
    23. Eslami, M. R., Hetnarski, R. B., Ignaczak, J., Noda, N., Sumi, N., and Tanigawa, Y., “Theory of Elasticity and Thermal Stresses: Explanations, Problems and Solutions (Solid Mechanics and Its Applications, vol. 197)” (2013).
    24. Forouzan, M. R., Salimi, M., and Gadala, M. S., “Three-dimensional FE analysis of ring rolling by employing thermal spokes method”, Int. J. Mech. Sci., 45(12), pp. 1975–1998 (2003).
    25. Negahban, A., Maracy, A., and Barati, E., “Investigation of 2-D Hot Ring Rolling Simulation and Effects of Different Parameters on Forming Process of Jet’s Spool”, J. Aeronaut. Eng., 18(1), pp. 75–92 (2016).
    26. Hua, L., Huang, X. G., and Zhu, C. D., “Theory and technology of ring rolling”, China Mech. Ind. Press. Beijing (2001).
    27. Abaqus, V., “6.14 Documentation”, Dassault Syst. Simulia Corp., 651 (2014).
    28. Huebner, K. H., Dewhirst, D. L., Smith, D. E., and Byrom, T. G., The Finite Element Method for Engineers, John Wiley & Sons (2008).
    29. Benasciutti, D., “on thermal stress and fatigue life evaluation in work-rolls of hot rolling mill”, J. strain Anal., 47(5), pp. 297–312 (2012).
    30. Negahban, A., Barati, E., Maracy, A., and vahdat azad, N., “Effect of initial temperature and cooling practice on thermo-mechanical stress of ring rolling”, Amirkabir J. Mech. Eng., 52(8), pp. 21–30 (2019).
    31. Shigley, J. E. and Mischke, C. R., Mechanical Engineering Design: In SI Units, McGraw-Hill (2005).
    32. Benedyk, J. C., High Performance Alloys Database(H-13) (2008).
    33. Yan, H., Qian, G., and Hu, Q., “Development of flow stress of AISI H13 die steel in hard machining”, J. Wuhan Univ. Technol. Sci. Ed., 22((2007)., 22(2), 187-190.), pp. 187–190 (2007).
    34. Efunda, “efunda” (2017).
    35. Philip, T. V., “ESR: a means of improving transverse mechanical properties in tool and die steels”, Met. Technol., 2(1), pp. 554–564 (1975).
    36. Fatemi, A. and Yang, L., “Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials”, Int. J. Fatigue, 20(1), pp. 9–34 (1998).
    37. Haibach, E., “Modified linear damage accumulation hypothesis”, Proc. Conf. Fatigue Welded Struct. Pp. Xx-Xxii (1970).
    38. Lee, Y.-L., Pan, J., Hathaway, R., and Barkey, M., Fatigue Testing and Analysis: Theory and Practice, Butterworth-Heinemann (2005).
    39. Lee, Y.-L., Barkey, M. E., and Kang, H.-T., Metal Fatigue Analysis Handbook: Practical Problem-Solving Techniques for Computer-Aided Engineering, Elsevier (2011).
    40. Köhler, M., Jenne, S., Pötter, K., and Zenner, H., Load Assumption for Fatigue Design of Structures and Components, Springer (2017).