References
1. Lee, D.-J., Kim, K., Lee, K.-N., et al., “Robust design of a novel three-axis fine stage for precision positioning in lithography”, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 224(4), pp. 877–888 (2010).
2. Abramovitch, D. and Franklin, G., “A brief history of disk drive control”, IEEE Control Syst., 22(3), pp. 28–42 (2002).
3. Kang, D. and Gweon, D., “Development of flexure based 6-degrees of freedom parallel nano-positioning system with large displacement”, Rev. Sci. Instrum., 83(3), p. 035003 (2012).
4. Bayat, S., Pishkenari, H. N., and Salarieh, H., “Observer design for a nano-positioning system using neural, fuzzy and ANFIS networks”, Mechatronics, 59, pp. 10–24 (2019).
5. Vakilzadeh, M. K., “Optimal sliding mode control for Atomic Force Microscope tip positioning during nano-manipulation process”, Sci. Iran., 20(6), pp. 2285–2296 (2013).
6. Pan, P., Zhu, J., Gu, S., et al., “Development of stick–slip nanopositioning stage capable of moving in vertical direction”, Microsyst. Technol., 26(9), pp. 2945–2954 (2020).
7. Korayem, M. H. and Yousefzadeh, M., “Adaptive Control of a Cable-Actuated Parallel Manipulator Mounted on a Platform with Differential Wheels under Payload Uncertainty”, Sci. Iran., (in press) (2018).
8. Korayem, M., Irani, M., and Nekoo, S. R., “Analysis of manipulators using SDRE: A closed loop nonlinear optimal control approach”, Sci. Iran., 17(6 B), pp. 456–467 (2010).
9. George, B., Tan, Z., and Nihtianov, S., “Advances in Capacitive, Eddy Current, and Magnetic Displacement Sensors and Corresponding Interfaces”, IEEE Trans. Ind. Electron., 64(12), pp. 9595–9607 (2017).
10. Nguyen, T. A. and Konishi, S., “Position feedback control for electrostatically controlled linear actuator”, Microsyst. Technol., 22(1), pp. 171–179 (2016).
11. Barber, M. E., Steppke, A., Mackenzie, A. P., at al., “Piezoelectric-based uniaxial pressure cell with integrated force and displacement sensors”, Rev. Sci. Instrum., 90(2) (2019).
12. Mitrovic, A., Leang, K. K., and Clayton, G. M., “Analysis and experimental comparison of range-based control for dual-stage nanopositioners”, Mechatronics, 69, p. 102371 (2020).
13. Fleming, A. J., “Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control”, IEEE/ASME Trans. Mechatronics, 15(3), pp. 433–447 (2010).
14. Fleming, A. J., “Position Control in Lithographic Equipment [Applications of Control]”, IEEE Control Syst., 31(5), pp. 28–47 (2011).
15. Golabi, H., “Measuring Small Displacements by Using a Capacitive Transducer System”, Sharif Univ. Technol., 7(1) (2000).
16. Moore, S. I., Fleming, A. J., and Yong, Y. K., “Capacitive Instrumentation and Sensor Fusion for High-Bandwidth Nanopositioning”, IEEE Sensors Lett., 3(8), pp. 2019–2021 (2019).
17. del Corro, P. G., Imboden, M., Pérez, D. J., et al., “Single ended capacitive self-sensing system for comb drives driven XY nanopositioners”, Sensors Actuators, A Phys., 271, pp. 409–417 (2018).
18. Kang, S., Lee, M. G., and Choi, Y. M., “Six Degrees-of-Freedom Direct-Driven Nanopositioning Stage Using Crab-Leg Flexures”, IEEE/ASME Trans. Mechatronics, 25(2), pp. 513–525 (2020).
19. Fleming, A. J. and Leang, K. K., Design, Modeling and Control of Nanopositioning Systems, Advances in Industrial Control, Springer International Publishing, Cham (2014).
20. Yeh, T.-J., Ruo-Feng, H., and Shin-Wen, L., “An integrated physical model that characterizes creep and hysteresis in piezoelectric actuators”, Simul. Model. Pract. Theory, 16(1), pp. 93–110 (2008).
21. Scaglioni, B., Bascetta, L., Baur, M., et al., “Closed-form control oriented model of highly flexible manipulators”, Appl. Math. Model., 52, pp. 174–185 (2017).
22. Schitter, G., Thurner, P. J., and Hansma, P. K., “Design and input-shaping control of a novel scanner for high-speed atomic force microscopy”, Mechatronics, 18(5–6), pp. 282–288 (2008).
23. Zhang, Z., Yang, X., and Yan, P., “Large dynamic range tracking of an XY compliant nanomanipulator with cross-axis coupling reduction”, Mech. Syst. Signal Process., 117, pp. 757–770 (2019).
24. Li, J., Huang, H., and Morita, T., “Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review”, Sensors Actuators, A Phys., 292, pp. 39–51 (2019).
25. Lee, H. J., Woo, S., Park, J., et al., “Compact compliant parallel XY nano-positioning stage with high dynamic performance, small crosstalk, and small yaw motion”, Microsyst. Technol., 24(6), pp. 2653–2662 (2018).
26. Liu, P., Yan, P., Zhang, Z., et al., “Modeling and control of a novel X–Y parallel piezoelectric-actuator driven nanopositioner”, ISA Trans., 56, pp. 145–154 (2015).
27. Shan, Y. and Leang, K. K., “Design and Control for High-Speed Nanopositioning: Serial-Kinematic Nanopositioners and Repetitive Control for Nanofabrication”, IEEE Control Syst., 33(6), pp. 86–105 (2013).
28. Qin, Y., Tian, Y., Zhang, D., et al., “Motion control of a 2-DOF decoupled compliant mechanism using H∞ synthesis”, 2012 Int. Conf. Manip. Manuf. Meas. Nanoscale, IEEE, pp. 222–227 (2012).
29. Rusdinar, A., Kim, J., Lee, J., et al., “Implementation of real-time positioning system using extended Kalman filter and artificial landmark on ceiling”, J. Mech. Sci. Technol., 26(3), pp. 949–958 (2012).
30. Dorostgan, M. and Taban, M. R., “Adaptive Radar Signal Detection in Autoregressive Interference using Kalman-based Filters”, Sharif Univ. Technol., (in press) (2019).
31. Sheikhbahaei, R., Vossughi, G. R., and Alasty, A., “Optimal Tuner Selection using Kalman Filter for a Real-Time Modular Gas Turbine Model”, Sci. Iran., 0(0), pp. 0–0 (2019).