References:
Johnson, W. and Mamalis, A.G. “The perforation of circular plate with four sided pyramidally-headed square-section punches", Int. J. of Mech. Sci., 20(3), pp. 801-820 (1990).
[1] Paul, E. Andreas, K. Russell, G. E, and et al. "Band structure of indium oxide: Indirect versus direct band gap", Phys. Revو B 75(15), pp. 153205-1 (2007).
[2] Geeta, S. Raj, R. and Abhai, M. "Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films", Phys. Rev. B 44(11), pp. 5672- 5680 (1991).
[3] Jefferson, P. H. Hatfield, S. A. Veal, T. D. King and et al, "Bandgap and effective mass of epitaxial cadmium oxide", Appl. Phys. Lett. 92(2), pp. 022101-022103 (2008).
[4] Leila, M. Boshra, G. S and Mohammad, Abrishami, "Effects of Mn doping on electrical properties of ZnO thin films", Modern Physics Letters B 30(4), pp. 1650024-8 (2016).
[5] Andreas, E. and Wilfried, L. "Solution-deposited PEDOT for transparent conductive applications", MRS Bulletin 36(10), pp. 794-798 (2011).
[6] Kazuhiro, N. and Kohtaro, T. "Production of transparent conductive films with inserted SiO2 anchor layer, and application to a resistive touch panel", Electronics and Communications in Japan 84(7), pp. 39-44 (2001).
[7] Maciej, S. Katarzyna, Z. Sylwia, W. and et al "Comparison of ZnO:Al, ITO and carbon nanotube transparent conductive layers in flexible solar cells applications", Materials Science and Engineering: B 177(15), pp. 1292-1298 (2012).
[8] Lee-May, H. Chih-Wei, H. Han-Chang, L. and et al "Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications", Solar Energy Materials and Solar Cells 99, pp. 154-159 (2012).
[9] Maciej, S. Katarzyna, Z. Mirosław, S. Michał, G. "AZO layers deposited by PLD method as flexible transparent emitter electrodes for solar cells", Microelectronic Engineering 127, pp. 57-60 (2014).
[10] Yu, Q, Henrico Hermawan, I. G. Jef Poortmans, "Direct current sputtered aluminum-doped zinc oxide films for thin crystalline silicon heterojunction solar cell", Materials Chemistry and Physics 141(2), pp. 744-751 (2013).
[11] Beck, A. Bednorz, J. G. Gerber, Ch. Rossel, C. and Widmer, D. "Reproducible switching effect in thin oxide films for memory applications", Appl. Phys. Lett. 77(1), pp. 139-141 (2000).
[12] Radhouane, B. H T. Takayuki, B. Yutaka, O. and et all "Tin doped indium oxide thin films: Electrical properties", Journal of Applied Physics 83(5), pp. 2631-2645 (1998).
[13] Kim, H. and Gilmore, C. M. "Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices", Journal of Applied Physics 86(11), pp. 6451-6461 (1999).
[14] Kim, H. Piqué, A. Horwitz, J. S. Mattoussi, H. and and et al, "Indium tin oxide thin films for organic light-emitting devices", Appl. Phys. Lett. 74(23), pp. 3444-3446 (1999).
[15] Tadatsugu, M. "Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications", Thin Solid Films 516(7), pp. 1314-1321 (2008).
[16] Kim, H. J. Horwitz, S. Kushto, G. and et al, "Effect of film thickness on the properties of indium tin oxide thin films", Journal of Applied Physics 88(10), pp. 6021-6025 (2000).
[17] Peelaers, H. Kioupakis, E. and Van de Walle, C. G. "Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2", Appl. Phys. Lett. 100(1), pp. 011914-011917 (2012).
[18] Eric N, D. Qing Wan, W. Yanbin, C. and et all "Fully Transparent Thin-Film Transistor Devices Based on SnO2 Nanowires", Nano Lett 7(9), pp. 2463-2469 (2007).
[19] Mohammad-Mehdi, B.M and Mehrdad, S.S "The influence of Al doping on the electrical, optical and structural properties of SnO2 transparent conducting films deposited by the spray pyrolysis technique", J. Phys. D: Appl. Phys. 37(8), pp. 1248-1253 (2004).
[20] Ogale, SB. Choudhary, RJ. Buban, JP. and et al, "High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO(2-delta)" J. Phys Rev Lett. 91)7) pp. 0772052- 0772059 (2003).
[21] Philip, J. Punnoose, A. Kim, B. I. and et al "Carrier-controlled ferromagnetism in transparent oxide semiconductors", Nature Materials 5(4), pp. 298-304 (2006).
[22] HarinathBabu, S. Kaleemulla, S. N. Madhusudhana, R. Krishnamoorthi, C. "Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications", Journal of Magnetism and Magnetic Materials 416(33), pp. 66-74 (2016).
[23] Anshu, S. Achary, S. N. Manjanna, J. Jayakumar, O and et all "Colloidal Fe-Doped Indium Oxide Nanoparticles: Facile Synthesis, Structural, and Magnetic Properties", J. Phys. Chem. C 113(9), pp. 3600-3606 (2009).
[24] Cun, W. Xinming, W. Bo-Qing, X. and et al, "Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation", Journal of Photochemistry and Photobiology A: Chemistry 168(1) pp. 47–52 (2004).
[25] Subramanian, R. Natarajan, R. Dhanasekaran and et al "Eco-friendly Synthesis of CRGO and CRGO/SnO2 Nanocomposite for Photocatalytic Degradation of Methylene Green Dye", ACS Omega 5 pp. 158−169 (2020).
[26] Leila, S. Anjali, A. "Graphene Oxide Synthesized by using Modified Hummers Approach", International Journal of Renewable Energy and Environmental Engineering 02(1), pp. 58-63 (2014).
[27] Ming, Z. Danni, L. Zhifeng, Du. and et al "Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions", J. Mater. Chem. 21(6), pp. 1673-1676 (2011).
14
[28] Suito, K. Kawai, N. Masuda, Y. "High pressure synthesis of orthorhombic SnO2", Materials Research Bulletin 10(7), pp. 677-680 (1975).
[29] Mahesh, B. Pallavi, S. Veda, R. "Synthesis of nanocrystalline SnO2 powder by amorphous citrate route", Materials Letters 57(9-10), pp. 1604-1611 (2003).
[30] Boshra. S, Ali, K, "Doped ZnO nanostructures with selected elements - Structural, morphology and optical properties: A review" Ceramics International 46(5) pp. 5507-7000, (2020).
[31] Yoo, D. T. Cuong, V. Pham, V. "Enhanced photocatalytic activity of graphene oxide decorated on TiO2 films under UV and visible irradiation" Current Applied Physics 11(3) pp. 805-808 (2011).
[32] Wang, W. Kapitanova, O Ilanchezhiyan, P and et al. "Self-assembled MoS2/rGO nanocomposites with tunable UV-IR absorption" RSC Adv. 49(8) pp. 2410-2417 (2018).
[33] Saleem, A. Ullah, N. Khursheed, K. and et al., “Graphene Oxide–TiO2 Nanocomposite Films for Electron Transport Applications” Journal of electronic materials, 47 (7) pp. 3749-3756 (2018).
[34] Mahmood, H. Habib, A. Mujahid, M. and et all ” Band gap reduction of titania thin films using graphene nano-sheets” Materials Sciencein Semiconductor Processing 24(1) pp. 193–199 (2014).
[35] Ali, R. Lila, Z. "Growth and Optical Properties Investigation of Pure and Al -doped SnO2 Nanostructures by Sol-Gel Method" Iran. J. Chem. Chem. Eng. 36(5) pp. 1-8 (2017).
[36] Camacho-López M. A., Galeana-Camacho J. R., Esparza-García A., and et al “Characterization of nanostructured SnO2 films deposited by reactive DC-magnetron sputtering”, Superficies y Vacío 26(3) pp. 95-99 (2013).
[37] Soumia, B. Nasr-Eddine H. “Concentration influence on structural and optical properties of SnO2 thin films synthesized by the spin coating technique”, Journal of Physics: Conference Series 758(1) pp. 012007 (2016).
[38] Syed Irfan, L. Fu, L. and et al “Effect of Graphene Oxide Nano-Sheets on Structural, Morphological and Photocatalytic Activity of BiFeO3-Based Nanostructures”, Nanomaterials (Basel) 9(2) pp. 1337 (2019).
[39] Azade, E. B. K. Davood, G. Masoud, S. and et al “Photo-catalyst tin dioxide: synthesis and characterization different morphologies of SnO2 nanostructures and nanocomposites”, J Mater Sci: Mater Electron 29 pp. 1238-1245 (2015).
[40] Damian, W. Michal, M. Michalina, K. and et al "Influence of Nd-Doping on Photocatalytic Properties of TiO2 Nanoparticles and Thin Film Coatings", International Journal of Photoenergy, 18 (51) pp. 29928-29942 (2014).