Preparation and investigation of optical properties and photocatalytic activity of SnO2/GO thin films

Document Type : Article

Authors

1 College of Education for Pure Sciences, University of Kerbala, Iraq

2 Borhan Nano Scale Company, Mashhad, Iran

Abstract

In this paper, SnO2-pure and SnO2/GO thin films with different concentrations of graphene oxide (0, 1, 2, 3 and 4 g/ml) were synthesized using spin coating method. The synthesized thin films were used to study the structural, morphology, chemical, optical and photocatalytic degradation of Methyl Orange (MO) under UV light irradiation by X-ray diffraction (XRD) spectroscopy, field emission scanning electron microscopy (FESEM), Raman spectroscopy, Ultraviolet–visible spectroscopy and UV light respectively. The XRD results of graphene oxide show that the peak is very sharp with high intensity, which indicates a very good crystallinity of the GO structure. The band gape value of SnO2/GO thin films increase by increasing of GO concentration. Under UV light irradiation, the photocatalytic activity of synthesized samples was measured using Methyl Orange dye. The obtained results indicate that by adding graphene oxide concentration, the photocatalytic activity of the tin oxide thin film increases.

Keywords


References:
Johnson, W. and Mamalis, A.G. “The perforation of circular plate with four sided pyramidally-headed square-section punches", Int. J. of Mech. Sci., 20(3), pp. 801-820 (1990).
[1] Paul, E. Andreas, K. Russell, G. E, and et al. "Band structure of indium oxide: Indirect versus direct band gap", Phys. Revو B 75(15), pp. 153205-1 (2007).
[2] Geeta, S. Raj, R. and Abhai, M. "Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films", Phys. Rev. B 44(11), pp. 5672- 5680 (1991).
[3] Jefferson, P. H. Hatfield, S. A. Veal, T. D. King and et al, "Bandgap and effective mass of epitaxial cadmium oxide", Appl. Phys. Lett. 92(2), pp. 022101-022103 (2008).
[4] Leila, M. Boshra, G. S and Mohammad, Abrishami, "Effects of Mn doping on electrical properties of ZnO thin films", Modern Physics Letters B 30(4), pp. 1650024-8 (2016).
[5] Andreas, E. and Wilfried, L. "Solution-deposited PEDOT for transparent conductive applications", MRS Bulletin 36(10), pp. 794-798 (2011).
[6] Kazuhiro, N. and Kohtaro, T. "Production of transparent conductive films with inserted SiO2 anchor layer, and application to a resistive touch panel", Electronics and Communications in Japan 84(7), pp. 39-44 (2001).
[7] Maciej, S. Katarzyna, Z. Sylwia, W. and et al "Comparison of ZnO:Al, ITO and carbon nanotube transparent conductive layers in flexible solar cells applications", Materials Science and Engineering: B 177(15), pp. 1292-1298 (2012).
[8] Lee-May, H. Chih-Wei, H. Han-Chang, L. and et al "Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications", Solar Energy Materials and Solar Cells 99, pp. 154-159 (2012).
[9] Maciej, S. Katarzyna, Z. Mirosław, S. Michał, G. "AZO layers deposited by PLD method as flexible transparent emitter electrodes for solar cells", Microelectronic Engineering 127, pp. 57-60 (2014).
[10] Yu, Q, Henrico Hermawan, I. G. Jef Poortmans, "Direct current sputtered aluminum-doped zinc oxide films for thin crystalline silicon heterojunction solar cell", Materials Chemistry and Physics 141(2), pp. 744-751 (2013).
[11] Beck, A. Bednorz, J. G. Gerber, Ch. Rossel, C. and Widmer, D. "Reproducible switching effect in thin oxide films for memory applications", Appl. Phys. Lett. 77(1), pp. 139-141 (2000).
[12] Radhouane, B. H T. Takayuki, B. Yutaka, O. and et all "Tin doped indium oxide thin films: Electrical properties", Journal of Applied Physics 83(5), pp. 2631-2645 (1998).
[13] Kim, H. and Gilmore, C. M. "Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices", Journal of Applied Physics 86(11), pp. 6451-6461 (1999).
[14] Kim, H. Piqué, A. Horwitz, J. S. Mattoussi, H. and and et al, "Indium tin oxide thin films for organic light-emitting devices", Appl. Phys. Lett. 74(23), pp. 3444-3446 (1999).
[15] Tadatsugu, M. "Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications", Thin Solid Films 516(7), pp. 1314-1321 (2008).
[16] Kim, H. J. Horwitz, S. Kushto, G. and et al, "Effect of film thickness on the properties of indium tin oxide thin films", Journal of Applied Physics 88(10), pp. 6021-6025 (2000).
[17] Peelaers, H. Kioupakis, E. and Van de Walle, C. G. "Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2", Appl. Phys. Lett. 100(1), pp. 011914-011917 (2012).
[18] Eric N, D. Qing Wan, W. Yanbin, C. and et all "Fully Transparent Thin-Film Transistor Devices Based on SnO2 Nanowires", Nano Lett 7(9), pp. 2463-2469 (2007).
[19] Mohammad-Mehdi, B.M and Mehrdad, S.S "The influence of Al doping on the electrical, optical and structural properties of SnO2 transparent conducting films deposited by the spray pyrolysis technique", J. Phys. D: Appl. Phys. 37(8), pp. 1248-1253 (2004).
[20] Ogale, SB. Choudhary, RJ. Buban, JP. and et al, "High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO(2-delta)" J. Phys Rev Lett. 91)7) pp. 0772052- 0772059 (2003).
[21] Philip, J. Punnoose, A. Kim, B. I. and et al "Carrier-controlled ferromagnetism in transparent oxide semiconductors", Nature Materials 5(4), pp. 298-304 (2006).
[22] HarinathBabu, S. Kaleemulla, S. N. Madhusudhana, R. Krishnamoorthi, C. "Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications", Journal of Magnetism and Magnetic Materials 416(33), pp. 66-74 (2016).
[23] Anshu, S. Achary, S. N. Manjanna, J. Jayakumar, O and et all "Colloidal Fe-Doped Indium Oxide Nanoparticles: Facile Synthesis, Structural, and Magnetic Properties", J. Phys. Chem. C 113(9), pp. 3600-3606 (2009).
[24] Cun, W. Xinming, W. Bo-Qing, X. and et al, "Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation", Journal of Photochemistry and Photobiology A: Chemistry 168(1) pp. 47–52 (2004).
[25] Subramanian, R. Natarajan, R. Dhanasekaran and et al "Eco-friendly Synthesis of CRGO and CRGO/SnO2 Nanocomposite for Photocatalytic Degradation of Methylene Green Dye", ACS Omega 5 pp. 158−169 (2020).
[26] Leila, S. Anjali, A. "Graphene Oxide Synthesized by using Modified Hummers Approach", International Journal of Renewable Energy and Environmental Engineering 02(1), pp. 58-63 (2014).
[27] Ming, Z. Danni, L. Zhifeng, Du. and et al "Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions", J. Mater. Chem. 21(6), pp. 1673-1676 (2011).
14
[28] Suito, K. Kawai, N. Masuda, Y. "High pressure synthesis of orthorhombic SnO2", Materials Research Bulletin 10(7), pp. 677-680 (1975).
[29] Mahesh, B. Pallavi, S. Veda, R. "Synthesis of nanocrystalline SnO2 powder by amorphous citrate route", Materials Letters 57(9-10), pp. 1604-1611 (2003).
[30] Boshra. S, Ali, K, "Doped ZnO nanostructures with selected elements - Structural, morphology and optical properties: A review" Ceramics International 46(5) pp. 5507-7000, (2020).
[31] Yoo, D. T. Cuong, V. Pham, V. "Enhanced photocatalytic activity of graphene oxide decorated on TiO2 films under UV and visible irradiation" Current Applied Physics 11(3) pp. 805-808 (2011).
[32] Wang, W. Kapitanova, O Ilanchezhiyan, P and et al. "Self-assembled MoS2/rGO nanocomposites with tunable UV-IR absorption" RSC Adv. 49(8) pp. 2410-2417 (2018).
[33] Saleem, A. Ullah, N. Khursheed, K. and et al., “Graphene Oxide–TiO2 Nanocomposite Films for Electron Transport Applications” Journal of electronic materials, 47 (7) pp. 3749-3756 (2018).
[34] Mahmood, H. Habib, A. Mujahid, M. and et all ” Band gap reduction of titania thin films using graphene nano-sheets” Materials Sciencein Semiconductor Processing 24(1) pp. 193–199 (2014).
[35] Ali, R. Lila, Z. "Growth and Optical Properties Investigation of Pure and Al -doped SnO2 Nanostructures by Sol-Gel Method" Iran. J. Chem. Chem. Eng. 36(5) pp. 1-8 (2017).
[36] Camacho-López M. A., Galeana-Camacho J. R., Esparza-García A., and et al “Characterization of nanostructured SnO2 films deposited by reactive DC-magnetron sputtering”, Superficies y Vacío 26(3) pp. 95-99 (2013).
[37] Soumia, B. Nasr-Eddine H. “Concentration influence on structural and optical properties of SnO2 thin films synthesized by the spin coating technique”, Journal of Physics: Conference Series 758(1) pp. 012007 (2016).
[38] Syed Irfan, L. Fu, L. and et al “Effect of Graphene Oxide Nano-Sheets on Structural, Morphological and Photocatalytic Activity of BiFeO3-Based Nanostructures”, Nanomaterials (Basel) 9(2) pp. 1337 (2019).
[39] Azade, E. B. K. Davood, G. Masoud, S. and et al “Photo-catalyst tin dioxide: synthesis and characterization different morphologies of SnO2 nanostructures and nanocomposites”, J Mater Sci: Mater Electron 29 pp. 1238-1245 (2015).
[40] Damian, W. Michal, M. Michalina, K. and et al "Influence of Nd-Doping on Photocatalytic Properties of TiO2 Nanoparticles and Thin Film Coatings", International Journal of Photoenergy, 18 (51) pp. 29928-29942 (2014).
Volume 28, Issue 3 - Serial Number 3
Transactions on Nanotechnology (F)
June 2021
Pages 1908-1916
  • Receive Date: 29 August 2019
  • Revise Date: 17 November 2020
  • Accept Date: 17 May 2021