References:
1. Rana, S., Nawaz, M., and Qureshi, I.H. "Numerical study of hydrothermal characteristics in nano fluid using KKL model with Brownian motion", Sci. Iran., 26(3), pp. 1931-1943 (2019).
2. Esmailpour, K., Azizi, A., and Hosseinalipour, S.M. "Numerical study of jet impingement subcooled boiling on superheated surfaces", Sci. Iran., 26(4), pp. 2369- 2381 (2019).
3. Pournaderi, P. and Pishevar, A.R. "Numerical simulation of oblique impact of a droplet on a surface in the film boiling regime", Sci. Iran., 21(1), pp. 119- 129 (2014).
4. Kamel, M.S., Al-agha, M.S., Lezsovits, F., et al. "Simulation of pool boiling of nano fluids by using Eulerian multiphase model", J. Therm. Anal. Calorim., 142, pp. 493-505 (2020).
5. An, Y.S. and Kim, B.J. "Numerical investigation of film boiling heat transfer on the horizontal surface in an oscillating system with low frequencies", Nucl. Eng. Technol., 52(5), pp. 918-924 (2020).
6. Shahmoradi, Z., Etesami, N., and Esfahany, M.N. "Pool boiling characteristics of nano fluid on at plate based on heater surface analysis", Int. Commun. Heat Mass Transf., 47, pp. 113-120 (2013).
7. Raveshi, M.R., Keshavarz, A., Mojarrad, M.S., et al. "Experimental investigation of pool boiling heat transfer enhancement of alumina-water-ethylene glycol nano fluids", Exp. Therm. Fluid Sci., 44, pp. 805-814 (2013).
8. Umesh, V. and Raja, B. "A study on nucleate boiling heat transfer characteristics of pentane and CuOpentane nano fluid on smooth and milled surfaces", Exp. Therm. Fluid Sci., 64, pp. 23-29 (2015).
9. Ji, W.T., Zhao, P.F., Zhao, C.Y., et al. "Pool boiling heat transfer of water and nano fluid outside the surface with higher roughness and different wettability", Nanoscale Microscale Thermophys., 22(4), pp. 296- 323 (2018).
10. Dareh, F.R., Haghshenasfard, M., Esfahany, M.N., et al. "An experimental investigation of pool boiling characteristics of alumina-water nano fluid over micro/nano-structured surfaces", Heat Transfer Eng., 40(20), pp. 1691-1708 (2019).
11. Kiyomura, I.S., Manetti, L.L., da Cunha, A.P., et al. "An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and on pool boiling of water", Int. J. Heat Mass Transf., 106, pp. 666-674 (2017).
12. Vasudevan, D., Senthilkumar, D., and Surendhiran, S. "Performance and characterization studies of reduced graphene oxides aqua nano fluids for a pool boiling surface", Int. J. Thermophys., 41, p. 74 (2020).
13. Reddy, Y.A. and Venkatachalapathy, S. "Heat transfer enhancement studies in pool boiling using hybrid nano fluids", Thermochim. Acta, 672, pp. 93-100 (2019).
14. Kamel, M.S. and Lezsovits, F. "Experimental investigation on pool boiling heat transfer performance using tungsten oxide WO3 nanomaterial-based water nano fluids", Materials, 13(8), p. 1922 (2020).
15. Mohammadi, M. and Khayat, M. "Experimental investigation of the effect of one-dimensional roughened surface on the pool boiling of nano fluids", Sci. Iran., 27(6), pp. 2954-2966 (2020).
16. Gylys, J., Skvorcinskiene, R., Paukstaitis, L., et al. "Film boiling influence on the spherical body's cooling in sub-cooled water", Int. J. Heat Mass Transf., 95, pp. 709-719 (2016).
17. Arai, T. and Furuya, M. "Effect of nano fluid on the film boiling behavior at vapor film collapse", 17th Int. Conf. Nucl. Eng., Brussels, Belgium (2009).
18. Ciloglu, D., Bolukbasi, A., and Comakli, K. "Effect of nano fluids on the saturated pool film boiling", World Acad. Sci. Eng. Technol., 6(7), pp. 1112-1124 (2012).
19. Li, J.Q., Fan, L.W., Zhang, L., et al. "An Experimental study of boiling heat transfer during quenching of nano fluids with carbon nanotubes of various sizes", ASME Heat Transfer Summer Conf.,Washington, DC, USA (2016).
20. Kang, J.Y., Kim, T.K., Lee, G.C., et al. "Minimum heat flux and minimum film-boiling temperature on a completely wettable surface: Effect of the Bond number", Int. J. Heat Mass Transf., 120, pp. 399-410 (2018).
21. Wcislik, S. "A simple economic and heat transfer analysis of the nanoparticles use", Chem. Pap., 71(12), pp. 2395-2401 (2017).
22. Talari, V., Behar, P., Lu, Y., et al. "Leidenfrost drops on micro/nanostructured surfaces", Front Energy., 12(1), pp. 22-42 (2018).
23. Ghiaasiaan, S.M., Two Phase Flow, Boiling and Condensation in Conventional and Miniature Systems, Cambridge University Press, New York (2008).
24. Hust, J.G. and Lankford, A.B., Thermal Conductivity of Aluminum, Copper, Iron, and Tungsten for Temperatures From 1 K to the Melting Point, U.S. Department of Commerce, Malcolm Baldrige, Colorado (1984).
25. Moffat, R.J. "Describing the uncertainties in experimental results", Exp. Therm. Fluid Sci., 1(1), pp. 3-17 (1988).
26. Rohsenow, W.M. "A method of correlating heat transfer data for surface boiling liquids", Trans. ASME., 74, pp. 969-975 (1952).
27. Zuber, N. "On the stability of boiling heat transfer", Trans. ASME., 80, pp. 711-720 (1958).
28. Chopkar, M., Das, A.K., Manna, I., et al. "Pool boiling heat transfer characteristics of ZrO2-water nanofluids from a flat surface in a pool", Heat Mass Transf., 44(8), pp. 999-1004 (2008).
29. Ahmed, O. and Hamed, M.S. "Experimental investigation of the effect of particle deposition on pool boiling of nano fluids", Int. J. Heat Mass Transf., 55(13-14), pp. 3423-3436 (2012).
30. Berenson, P.J. "Film-boiling heat transfer from a horizontal surface", J. Heat Transf., 83, pp. 351-356 (1961).
31. Bromley, L.A. "Heat transfer in stable film boiling", Chem. Eng. Prog. Symp. Ser., 46, pp. 221-227 (1950).
32. Henry, R.E. "A correlation for the minimum film boiling temperature", Chem. Eng. Prog. Symp. Ser., 70(138), pp. 81-90 (1974).