References:
[1] Choi, S. U. S. “Enhancing thermal conductivity of fluids with nanoparticles”, ASME Pub. Fed., 231, pp. 99-106 (1995).
[2] Buongiorno, J., “Convective transport in nanofluids”, J. Heat Transfer, 128, pp. 240-250 (2006).
[3] Khan, M., Irfan, M. and Khan, W. A., “Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to revised mass flux condition”, Results Phys., 9, pp. 851-857 (2018).
[4] Mohebbi, R., Izadi, M. and Chamkha, A. J., “Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid”, Phys. Fluids, 29(12), DOI:10.1063/1.4993866 (2017).
[5] Mashaei, P. R., Hosseinalipour, S. M. and Bahiraei, M., “Numerical investigation of nanofluid forced convection in channels with discrete heat sources”, J. Appl. Math, 2012, DOI:10.1155/2012/259284 (2012).
[6] Kumam P., Shah, Z., Dawar, A., et al. “Entropy generation in MHD radiative flow of CNTs Casson nanofluid in rotating channels with heat source/sink”, Math Probl. Eng., 2019, DOI:10.1155/2019/9158093 (2019).
[7] Hassan, M., Marin, M., Alsharif, A., et al. “Convective heat transfer flow of nanofluid in a porous medium over wavy surface”, Phys. Lett. A, 382(38), pp. 2749-2753 (2018).
[8] Guha, A. and Nayek, S., “Thermo-fluid-dynamics of natural convection around a heated vertical plate with a critical assessment of the standard similarity theory”, Phys. Fluids, 29(10), DOI:10.1063/1.4990279 (2017).
[9] Sheikholeslami, M., Jafaryar, M., Said, Z., et al. “Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach”, Appl. Therm. Eng., 182, DOI:10.1016/j.applthermaleng.2020.115935 (2020).
[10] Sheikholeslami, M., Farshad, S. A., Shafee, A., et al. “Performance of solar collector with turbulator involving nanomaterial turbulent regime”, Renew. Energy, 163, pp. 1222-1237 (2020).
[11] Hakeem, A. K. A., Indumathi, N., Ganga, B., et al. “Comparison of disparate solid volume fraction ratio of hybrid nanofluids flow over a permeable flat surface with aligned magnetic field and Marangoni convection”, Sci. Iran., DOI:10.24200/SCI.2020.51681.2312 (2020).
[12] Turkyilmazoglu, M., “Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis”, Comput. Meth. Prog. Bio., 187, DOI:10.1016/j.cmpb.2019.105171 (2020).
[13] Sadeghi, V., Baheri, S. and Arsalani, N., “An experimental investigation of the effect of using non-Newtonian nanofluid- graphene oxide /aqueous solution of sodium carboxymethyl cellulose- on the performance of direct absorption solar collector”, Sci. Iran., DOI:10.24200/SCI.2020.54994.4024 (2020).
[14] Sheikholeslami, M., Rizwan-ul Haq, Ahmad, S., et al. “Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger”, Int. J. Heat Mass Transf., 135, pp. 470-478 (2019).
[15] Sheikholeslami, M., Behnoush, R., Milad, D., et al. “Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study”, Int. J. Heat Mass Transf., 141, pp. 974-980 (2019).
[16] Ahmad, S., Ashraf, M. and Ali, K., “Nanofluid flow comprising gyrotactic microorganisms through a porous media”, JAFM, 13(5), pp. 1539-1549 (2020).
[17] Khan, S. A. and Siddiqui, M. A., “Numerical studies on heat and fluid flow of nanofluid in a partially heated vertical annulus”, Heat Transfer, 49(3), pp. 1458-1490 (2020).
[18] Irfan, M., Farooq, M. A. and Iqra, T., “A new computational technique design for EMHD nanofluid flow over a variable thickness surface with variable liquid characteristics”, Front. Phys., DOI:10.3389/fphy.2020.00066 (2020).
[19] Turkyilmazoglu, M., “Multiple analytic solutions of heat and mass transfer of magnetohydrodynamic slip flow for two types of viscoelastic fluids over a stretching surface”, J. Heat Transfer, 134(7), DOI:10.1115/1.4006165 (2012).
[20] Khan, Y., “Magnetohydrodynamic flow of linear visco-elastic fluid model above a shrinking/stretching sheet: A series solution”, Sci. Iran., 24(5), pp. 2466-2472 (2017).
[21] Kumar, R., Sood, S., Sheikholeslami, M., et al. “Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations”, J. Colloid Interface Sci., 505, pp. 253-265 (2017).
[22] Irfan, M., Farooq, M. A. and Iqra, T., “Magnetohydrodynamic free stream and heat transfer of nanofluid flow over an exponentially radiating stretching sheet with variable fluid properties”, Front. Phys., DOI:10.3389/fphy.2019.00186 (2019).
[23] Akhter, S., Ashraf, M. and Ali, K., “MHD flow and heat transfer analysis of micropolar fluid through a porous medium between two stretchable disks using Quasi-linearization method”, Iran. J. Chem. Chem. Eng., 36(4), pp. 155-169 (2017).
[24] Akhter, S. and Ashraf, M., “Numerical study of flow and heat transfer in a porous medium between two stretchable disks using Quasi-linearization method”, Therm. Sci., DOI:10.2298/TSCI180801163A (2019).
[25] Turkyilmazoglu, M., “Stretching/shrinking longitudinal fins of rectangular profile and heat transfer”, Energy Convers. Manag., 91, pp. 199-203 (2015).
[26] Turkyilmazoglu, M., “Latitudinally deforming rotating sphere”, Appl. Math.Model., 71, pp. 1-11 (2019).
[27] Farooq, M., Salahuddin, A., Razzaq, M., et al. “Computational analysis for unsteady and steady magnetohydrodynamic radiating nano fluid flow past a slippery stretching sheet immersed in a permeable medium”, Sci. Iran., DOI:10.24200/SCI.2020.53055.3039 (2020).
[28] Kuznetsov, A. V., “The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms”, Int. Commun. Heat Mass Transf., 37(10), pp. 1421-1425 (2010).
[29] Kuznetsov, A. V., “Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganism: Oscillatory instability”, Nanoscale Res. Lett., 6, DOI:10.1186/1556-276X-6-100 (2011).
[30] Khan, W. A., Rashad, A. M., Abdou, M. M. M., et al. “Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone”, European J. Mech. - B/Fluids, 75, pp. 133-142 (2019).
[31] Hayat, T., Waqas, M., Shehzad, S. A., et al. “Mixed convection flow of viscoelastic nanofluid by a cylinder with variable thermal conductivity and heat source/sink”, Int. J. Numer. Method H., 26(1), pp. 214-234 (2016).
[32] Mehryan, S. A. M., Kashkooli, F. M., Soltani, M., et al. “Fluid flow and heat transfer analysis of a nanofluid containing motile gyrotactic micro-organisms passing a nonlinear stretching vertical sheet in the presence of a non-uniform, magnetic field numerical approach”, PLOS, DOI:10.1371/journal.pone.0157598 (2016).
[33] Akbar, N. S., “Bioconvection peristaltic flow in an asymmetric channel filled by nanofluid containing gyrotactic microorganism”, Int. J. Numer. Method H., pp.0961-5539 (2015).
[34] Atif, S. M., Hussain, S. and Sagheer, M., “Magnetohydrodynamic stratified bioconvective flow of micropolar nano fluid due to gyrotactic microorganisms”, AIP Adv., 9(2), DOI:10.1063/1.5085742 (2019).
[35] Zuhra, S., Khan, N. S., Shah, S., et al. “Simulation of bioconvection in the suspension of second grade nanofluid containing nanoparticles and gyrotactic microorganisms”, AIP Adv., 10(8), DOI:10.1063/1.5054679 (2018).
[36] Atif, S., Hussain, S. and Sagheer, M., “Effect of thermal radiation on MHD micropolar Carreau nanofluid with viscous dissipation, Joule heating, and internal heating”, Sci. Iran., 26(6), pp. 3875-3888 (2019).
[37] Nawaz, M., “Numerical study of hydrothermal characteristics in nano fluid using KKL model with Brownian motion”, Sci. Iran., 26(3), pp. 1931-1943 (2019).
[38] Ferdows, M., Zaimi, K., Rashad, A. M., et al. “MHD bioconvection flow and heat transfer of nanofluid through an exponentially stretchable sheet”, Symmetry, 12(5), DOI:10.3390/sym12050692 (2020).
[39] Shakiba, A. and Rahimi, A. B., “Role of movement of the walls with time-dependent velocity on flow and mixed convection in vertical cylindrical annulus with suction / injection”, Sci. Iran., DOI:10.24200/SCI.2020.54784.3917 (2020).
[40] Ahmed, A., Khan, M., Ahmed, J., et al. “Mixed convection in unsteady stagnation point flow of Maxwell fluid subject to modified Fourier’s law, Arab. J. Sci. Eng., 45, pp. 9439-9447 (2020).
[41] Aman, F., Hafizah, W. N., Khazim, W. M., et al. “Mixed convection flow of a nanofluid containing gyrotactic microorganisms over a stretching/shrinking sheet in the presence of magnetic field”, IOP Conf. Series: Journal of Physics: Conf. Series, 890, DOI:10.1088/1742-6596/890/1/012027 (2017).
[42] Ahmad, S., Ashraf, M. and Ali, K., “Heat and mass transfer flow of gyrotactic microorganisms and nanoparticles through a porous medium”, Int. J. Heat and Technol., 32(2), pp. 395-402 (2020).
[43] Sheikholeslami, M. and Rokni, H. B., “Effect of melting heat transfer on nanofluid flow in the presence of a magnetic field using the Buongiorno Model”, Chin. J. Phys., 55(4), pp. 1115-1126 (2017).
[44] Wahid, N. S., Hafidzuddin, M. E. H., Arifin, N. M., et al. “Magnetohydrodynamic (MHD) slip Darcy flow of viscoelastic fluid over a stretching sheet and heat transfer with thermal radiation and viscous dissipation”, CFD Lett., 12(1), pp. 1-12 (2020).
[45] Wahid, N. S., Hafidzuddin, M. E. H., Arifin, N. M., et al. “Exact analytical solution for MHD flow and heat transfer of Jeffrey fluid over a stretching sheet with viscous dissipation”, JMEST, 6(12), (2019).
[46] Wahid, N. S., Arifin, N. M., Turkyilmazoglu, M., et al. “MHD Hybrid Cu-Al2O3/ Water nanofluid flow with thermal radiation and partial slip past a permeable stretching surface: analytical solution”, J. Nano R., 64, pp. 75-91 (2020).
[47] Turkyilmazoglu, M., “The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface”, Int. J. Mech. Sci., 77, pp. 263-268 (2013).
[48] Khan, S. U., Shehzad, S. A., Rauf, A., et al. “Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat absorption/generation effects”, Results Phys., 8, pp. 1223-1231 (2018).
[49] Lund, L. A., Omar, Z., Khan, I., et al. “Convective effect on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid overa vertical exponentially stretching/shrinking surface: triple solutions”, Symmetry, 12, DOI:10.3390/sym12081238 (2020).
[50] Mustafa, I., Abbas, Z., Arif, A., et al. “Stability analysis for multiple solutions of boundary layer flow towards a shrinking sheet: analytical solution by using least square method”, Phys. A Stat. Mech. Its Appl., 540, DOI:10.1016/j.physa.2019.123028 (2020).